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Abstract: A new protocol for the interpretation of NMR relaxation data in terms of intramolecular motion is described.

At first, a long molecular dynamics simulation of the system is generated and analyzed with respect to nuclear spin
relaxation-active motional modes. In a second step, an analytical model is conceived on the basis of the computational
results. Finally, the model parameters are determined numerically by a least-squares fit to the experimental NMR
data. This protocol was applied to the phenylalanine side-chain dynamics in the cyclic decapeptide antamanide. A
100 ns Langevin dynamics simulation was analyzed in terms of dihedral angle fluctuations, correlation functions,
and potentials of mean force. Fgr andyz, motion in a harmonic potential is observed which is interrupted by
occasional jumps between different rotamers over relatively high barriers. This behavior leads to an analytical Gaussian
axial fluctuation and jump model, which is an extension of the previously proposed GAF modstiiBrmiler, R.;

Wright, P. E.J. Am. Chem. Sod.994 116, 8426).

1. Introduction considered free diffusion and jump motion of an internuclear

. . . . vector about a single axis, much effort has been directed toward
Itis nowadays widely recognized that the detailed knowledge o development of improved models. Wallach extended the

of the average structure of a biomolecule, as it can be determinedy, e taking into account free rotations and jump motions about
by X-ray crystallography or nuclear magnetic resonance (NMR) adjacent chemical bonds along a side caim subsequent
spectroscopy, is insufficient for the understanding of its chemical |, 0 the model was modified to allow for jump motions

reactivity and its molecular interactions. Biomolecular function .iveen different rotamers and restricted rotational diffusion
is intimately connected to molecular flexibility, and structural | iinin a rotameric state represented by a square-well poten-
data must be supplemented by information on intramolecular 5 9.10 or diffusion within a cone (“wobbling in a cone?}:12
dynamics and mobility. _ In the early 1980s, two important complementary develop-
NMR is a most powerful and versatile tool for the study of ents began. On the one hand, Lipari and S¥aaddressed
molecular dynamic$.® In particular, nuclear spin relaxation  the problem that experimental relaxation data often do not allow
measurements can provide a wealth of detailed information on gne to discriminate between different motional models. They
intramolecular mobility. *N relaxation measurements have jntroduced a “model-free” description, where internal motion
become a standard method for the investigation of the backbone;g locally parametrized by an order parameter and an intra-
dynamics of protein$,and **C relaxation is well-suited for  molecular correlation time, thereby preventing a possible
studying the functionally important amino acid side-chain oyerinterpretation of the data. An extension of this concept has
dynamics. been described in ref 14. In the model-free formalism, one
The design of appropriate motional models for the interpreta- refrains from a physical preconception and analyzes the
tion of the relaxation measurements has been a central issu&xperimental data in terms of mathematical correlation functions
from the very beginning, realizing that the available measure- which themselves are parametrized by a minimum set of time-
ments are invariably insufficient for a self-contained description scale and order parameters. Such a local description of motion
of molecular dynamics. According to BloetwWangsness does not yield immediate information about correlated dynamics
Redfield relaxation theory? the experimentally accessible or long-range motion¥ The connection to a physical model
information is contained in the power spectral density function s thereby lost, and the link has to be established in a second
which is the Fourier transform of the correlation function of interpretative step. The relation between the model-free de-
the time-dependent lattice parts of the relaxation-active spin scription and the restricted rotational diffusion plus jump model
interactions.  Since the pioneering work of Woesshemo for aromatic side chaifi4® has been derived by Levy and
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6 T )
Sheridan® A concept, which is relateq to the model-free 1. Generation of MD trajectory |
approach, has been proposed and applied by Peng and Wag- I
ner”18aiming at a direct determination of power spectral density 2. Analysis of trajectory and
components at various frequencies. As in the model-free establishment of a motional model

. . . . T
formalism, the physical interpretation of the power spectral 3. Expression of NMR comrelation

densit_ies has to follow in a subsequent step. functions by model parameters
A different approach has been pursued by Levy, Wolynes, 1
and Karplu$® who calculated for the first time NMR relaxation | 4. Sensitivity test and consistency analysis ]

|
l 5. Application of model to experimental data |

parameters on the basis of molecular dynamics (MD) simula-
tions. The trajectories allowed them to estimate the accuracy
of the inherent assumptions in the analytical models, such asFigure 1. Outline of the proposed procedure.
the independence of rotations about different side-chain axes.

It was attempted to overcome the insufficient sensitivity of the a Phe? Phe!?

relaxation data for discerning different analytical models by

introducing independent knowledge in form of empirical mo- HG  CHs

lecular force fields. More recently, it has been shown that MG —CH, CH, CH, H oo,

norma_l mode analy_sis of proteins is gpplicable for the inter- H;{\ CH-CO-NH-CH-CO-NH-GH~GO-NH-CH-CO-N__CH,

pretation of fast-time-scale dynamical effects on NMR q‘ T

relaxation20-22 ¢o ¢o
To assess the pros and cons of different approaches, it is ct

LR NS

. . . . .. . HyC N-CO=CH~NH-CO-CH-NH-CO-CH-NH-CO~-HC GCHy

useful to define evaluation criteria. In our opinion, an ideal G- CH I | 6= CH
2 2 2= VT2

model should fulfill three criteria: (1) It should bealisticand
take into account our knowledge on feasible molecular dynamics
modes. (Il) It should allow araccurate explanation of the
experimental data within the experimental errors. (lll) It should Phe® Phe’
besimpleand involve a minimal number of motional parameters.
The most realistic description of intramolecular dynamics
today is by an analytical force field, allowing for molecular
dynamics simulations mimicking the natural processes. One
may conceive to adjust the force field parameters on the basis
of the NMR data in the hope of obtaining a more realistic and
reliable potential energy surface. This procedure is unfortu-
nately seldom feasible as the number of force field parameters
involved is normally high and surmounts the number of available
measurements. For quasi-harmonic dynamics, in the absencerigure 2. (a) Cyclic decapeptide antamanide and (b) the phenylalanine
of jump processes, a collective motional model has been residue with atom definitions used in the text.
introduced recently, where NMR relaxation data are fitted by
adjusting amplitudes and directions of collective normal mééles. Langevin dynamics simulation of antamanide, the motional
The application of an analytical model requires restrictive picture emerging for the phenylalanine side chains consists of
assumptions to be made about the NMR-relevant motional strongly damped harmonic oscillations within the localized
modes, such as small-amplitude local fluctuations or specific potential wells, interrupted by occasional jumps between dif-
jump or diffusion-type processes. In this way, an interpretation ferent rotameric states over relatively high barriers. The
of NMR data becomes feasible, but will remain highly depend- presented motional model can be considered as an extension of
ent on the model assumptions. Often several alternatives carthe Gaussian axial fluctuation (GAF) moéfeto 2 degrees of
hardly be distinguished on the basis of the available data &fone. freedom superimposed by lattice jump motion, called the GAF
The protocol presented in this work, which is outlined in & jump model. Mathematical details of the model are described
Figure 1, combines positive features of the different approaches.in the Appendix. Relations between harmonic motions and
It advocates an analytical model that is based on an MD correlation functior® have been used previously also in the
simulation rather than obtained by physical intuition, circum- context of fluorescence anisotropy decay thedip.
venting some of the arbitrariness involved in selecting a motional ) ) )
model on other grounds. The protocol was tested on the 2. Interpretation of NMR Relaxation Data by a Physical
phenylalanine side-chain dynamics in the cyclic decapeptide Model Derived from MD Simulations

antamanide (Figure 2), and compared with an NMR stidy  The proposed analysis procedure consists of five steps (Figure
where experimental data are interpreted in terms of rotational 1):

CH, CH, CHg

motions abouty; and y2. From the analysis of a 100 ns (1) Molecular Dynamics Simulation. At first, an MD simu-
(16) Levy, R. M.; Sheridan, R. FBiophys. J1983 41, 217—221. lation trajectory of the system under investigation is generated
(17) Peng J. W.; Wagner G. Magn. Reson1992 98, 308-332. to identify relevant dynamical modes. The success of the
(18) Peng J. W.; Wagner @iochemistryl992, 31, 85718586 . approach depends crucially on the choice of a reliable and well-

(19) Levy, R. M.; Karplus, M.; Wolynes, P. G. Am. Chem. Sod981

103 5998-6011. tested force field which faithfully represents the actual molecular
(20) Brischweiler, R.J. Am. Chem. S0d.992 114, 5341-5344. properties. The MD simulation should ideally span at least 10
90é271) Palmer, A. G.; Case, D. Al. Am. Chem. Sod992 114, 9059~ times the largest internal motional correlation time, but does
(22) Sunada, S.; Gd\.; Koehl, P.J. Chem. Phys1996 104, 4768~ (25) Brischweiler, R.; Wright, P. El. Am. Chem. So&994 116 8426~
4775. 8427.
(23) Brischweiler, R.; Case, D. &hys. Re. Lett. 1994 72, 940-943. (26) Chandrasekhar, Rev. Mod. Phys1943 15, 1—89.
(24) Bremi, T.; Ernst, M.; Ernst, R. R. Phys. Cheml994 98, 9322 (27) Kinosita, K., Jr.; Ikegami, ABiophys. J.1982 37, 461-464 .

9334. (28) Szabo, AJ. Chem. Phys1984 81, 150-167.
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not need to be much longer than about 10 times the overall (v) Wobbling in a cone: The significant presence of fast
tumbling correlation time.. For biomolecules simulation times  backbone dynamics may necessitate explicit parametrization of
of ten to hundreds of nanoseconds are usually necessary andhe motion of the €-CF vector, for example, as diffusion inside
appropriate, which precludes the full representation of the a conell1?

solvent interactions, and often Langevin dynamics must be |n sjtuations with two or more segmental motions, such as
employed. Obviously, a judiciously planned compromise in the situation of phenylalanine side chains witp;and ay»
between affordable computation time and acceptable Statisticahotor’ the different processes can also be correlated, requiring,
properties of the trajectory must be found. In the present for example, the use of correlation coefficients to characterize
context, good statistics is mandatory to test whether the the combined motion.

analytical model derived from the simulation can quantitatively (3) Analytical Expression of NMR Correlation Functions
reproduce the NMR relaxation data calculated directly from the by Model Parameters. At this stage of the procedure, the link

simulation. o _ _ between the parametrized description of the observed MD
Itis mostly unrealistic to expect that the MD simulation would - motions and NMR relaxation is established. For this purpose,
cover the entire ergodic ensemble of possible structures, in spiteanalytical expressions are derived for the relaxation-relevant

of the extensive computation time. Itis thus necessary to start correlation functions depending explicitly on the chosen model
the simulation from a relevant molecular conformation, e.g., & parameters. This step is described in some detail in the

high'resolution structure obtained by NMR or X-ray. In the Appendix for the phenyla|anine side chains.

presence of slow intramolecular dynamics modes in the micro- (4) Sensitivity Analysis and Consistency Test.There is

or milliseconds that cannot be covered by the MD simulation, " 2 priori guarantee that NMR relaxation data allow an
several runs with properly selected initial structures should be ;. ,rate and robust determination of the introduced model
performed and the resulting spectral density functions averaged'parameters. A sensitivity analysis and consistency test, de-

(2) Analysis of the Trajectory and Construction of the  scribed in section 4, is therefore necessary: NMR relaxation
Motional Model. Understanding the MD trajectory requires  ata are calculated on the basis of the correlation functions of
an analysis of the soft motional degrees of freedom, which often the MD calculation, and the parameters of the model are fitted
coincide with the mobile dihedral angles. By means of a tg these values. Agreement between the parameters determined
statistical analysis, rotamer populations and their respectivein step 2 and the fitted parameters, and their sensitivity with

interconversion rates can be estimated. Computation of auto-respect to errors in the relaxation data, can thereby be assessed.
correlation and cross-correlation functions of dihedral angles (5) Application to Experimental Data. A motional model

reveals the relevant motional time scales and the presence 0fthat passes the consistency test is then ready for application to

correlz;tlonég%fofelcts. FL;trthert'_morel,devaIuatlofr; of dpoter;Ua(Ijs_ of experimental relaxation data. The availability of other experi-
mean force ="along soit motional degrees of reedom, 1€ading - yantg) data, such as scalacoupling constants, may help to

to an eff(_actlye free energy sprface, may aI.IOW. an aqglytlcal improve the accuracy of the determined model parameters.
parametrization of the potential surface which is sufficiently Finally, the extracted experimental motional parameters may
realistic to reproduce qualitative and quantitative properties of be cor’npared with the LD results. If the differences are

the MD trajectory. An example of such an analysis is given in reasonably small and at least qualitative agreement is found,

section 3. ) ] the protocol is self-consistent. Larger differences, on the other
For the sake of clarity, we sketch conceivable models that hang, may suggest the examination of further motional models,
may result from this type of analysis for amino acid side-chain e.g., extracted by using other force fields or other initial
motions. structures.
(i) Rotational diffusion model: A potential of mean force
that is virtually flat withinkgT for a free or restricted angular 3 MD Simulation of Antamanide
range would suggest an unrestricted or restricted rotational
diffusion model characterized by a rotational diffusion constant ~ 3.1. Computational Details. A 100 ns Langevin dynamics
and possibly a rotational restriction angté? (LD) simulation (stochastic dynamics) was performed for the

(i) Gaussian axial fluctuation model: A locally quadratic ~cyclic decapeptide antamanide (Figure 2a) using the CHARMM
potential of mean force, limited by high barriers, suggests a program with the force-field parameters of versior’2% For

Gaussian axial fluctuation model, characterized by a variance the initial structure, the antamanide backbone structtre)(
o2 and an effective correlation timg.25-28 determined by the MEDUSA algorith#i,was chosen and the

(iii) Rotational jump model: A potential of mean force with ~ ¢Yclic topology of antamanide was treated in an all-atom
several narrow minima, separated by barriers of intermediate @PProach with explicit hydrogen atoms (total of 162 atoms).

height (severaksT), suggests the application of a discrete The SHAKE algorithrd* was applied, and the integration step

rotational jump modélwith equal or unequal site populations ~SiZ€ was set to 1 fs. No cutoff was used for the nonbonded
and a set of transfer rate constants. interactions. The dielectric permittivity was set to 1.0. Other

(iv) Rotational fluctuation and jump model: A more general detailed accounts of LD simulations of antamanide can be found

model combines either (i) and (iii) or (ii) and (ii). Local " "ef35:

fluctuations in either a square well or quadratic potential are ~(33)gro0ks, R. B.; Bruccoleri, R. E.; Olafson, B. D.. States, D. J..
combined with jumps between different rotamers. The local Swaminathan, S.; Karplus, M. Comput. Chenl983 4, 187-217.
fluctuations are again characterized by a varian@ewhich (32) Mackerell, A. D. Jr.; Bashford, D.; Bellot, M.; Dunbrack, R. L;

; ; ; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Joseph, D.; Ha, S.; Kuchnir, L.;
may differ from rotamer to rotamer while the jump processes Kuczera, K.: Lau, F. T, K.. Mattos, C.: Michnick. S.: Nguyen, D. T.: Ngo,

are governed by transfer rate constants. T.; Prodhom, B.; Roux, B.; Schlenkrich, B.; Smith, J.; Stote, R.; Straub, J.;
Wiorkiewicz-Kuczera, J.; Karplus, MBiophys. J.1992 61, A134.

(29) Brooks, C. L., llI; Karplus, M.; Pettitt, B. MProteins: A Theoretical (33) Brischweiler, R.; Blackledge, M.; Ernst, R. R.Biomol. NMRL99],
Perspectie of Dynamics, Structure, and Thermodynamichn Wiley & 1, 3—11. (b) Blackledge, M. J.; Bachweiler, R.; Griesinger, C.; Schmidt,
Sons: New York, 1987. J. M.; Xu, P.; Ernst, R. RBiochemistry1993 32, 10960-10974.

(30) Beutler, T. C.; Bremi, T.; Ernst, R. R.; van Gunsteren, WJF. (34) Ryckaert, J. P.; Cicotti, G.; Berendsen, H. JJCComput. Phys.

Phys. Chem1996 100, 26372645. 1977, 23, 327-341.



Interpretation of Side-Chain Dynamics J. Am. Chem. Soc., Vol. 119, No. 18, ¥29b

a C
120
60 ‘
= 0
S
~ -60
=
-120 fil}
[
-180
0 5 tpg 10 15 0 10 20 30 40 50 60 70 80 90 100
b d t [ns]
240
F 180 |
180 6 ] F9 |
120 n ‘ 120 ‘i '
7 501 i = 60 ]
k=) 0 { ﬁ |
N
= .60 ‘ S0
-120 ‘ i ‘ -60 4
-180 ]
-120
—240‘ M 1 T T T T T T T T T
0 5 tpg 10 15 0 10 20 30 40 50 60 70 80 90 100

[ns}
Figure 3. Dihedral angle trajectories of the two phenylalanine residues 6 and 9 of antamanige:tréggctory of F6 (inset shows the full 100
ns trajectory); 387 transitions are observed from the conformar#(—60°) to Il (y1 = —18C°) and 387 transitions from Il to I, 3 transitions from
I to Il (1 = 60°), and also 3 transitions from 1ll to I; () trajectory of F6; about 310 ring flips occur during the 100 ns trajectory (due to the
%1, X2 jump correlation, the flip count is ambiguous); fg)trajectory of F9; (d)y. trajectory of F9; 20 ring flips are observed.

The simulation temperature was elevated to 400 K for more  3.2. Phenylalanine Motions. In the present simulation, the
comprehensive sampling of the side-chain conformations. four phenylalanine side chains show a characteristic behavior
While such a procedure has the potential drawback that thein the y1, y» rotational dynamics (Figure 2b). F5, F9, and F10
sampled motion may no longer be representative for the stay for more than 95% of the simulation time in fhe= —60°
experimental measurement conditions, for antamanide we have(l) rotamer. By contrast, F6 shows frequent interconversion
found that LD simulations carried out at 306%®and a MD between the-60° and —18C (ll) rotamers and rare visits of
simulation in chloroform at 250 ¥ show motional behavior  they; = 60° (lll) rotamer. They, dynamics can be character-
qualitatively similar to that observed in the present work. Since ized for all four phenylalanines by local fluctuations and by
the primary purpose of the MD simulation in this protocol is 180 jumps. During the 100 ns simulation time the aromatic
the extraction of a qualitative rather than a quantitative dynami- rings of F5 and F10 show only 9 and 8 transitions, respectively,
cal picture, a moderate increase of the temperature is worthwhereas F6 and F9 display better statistics with 313 and 20
consideration. Rare backbone flips that would disturb the transitions, respectively. Since the behaviors of F5 and F10
statistics were avoided by constraining all heavy backbone atomsstrongly resemble that of F9, only F6 and F9 are further analyzed
by a weak harmonic potential of strength 0.1 kcal/£Obvi- in the following. The time dependence pfandy: for F6 and
ously, the backbone conformation may affect the side-chain F9 is shown in Figure 3.

mobility, but the qualitative motional models, which shall be Equilibrium properties and correlation effects between the
deduced, are not altered (unpublished results). The 100 ns, anq,, motions are conveniently visualized by scatter plots
S|mulat|o_n required fourmonths of CPU time on an SGI Onyx (Figure 4). F9 populates two substates (Figure 4c) which
work_statlon. The coordinates were sampled every 0.5 PS: correspond to @y, = 18C ring flip. Both y1 andy exhibit
Ieadlngl})to a tfo(tjgl I?umber of 200 000 snapshots which required ho 5y Gaussian distributions as is visible from the histograms
400 Mbyte o ISk Space. . . . in Figure 4c. The “principal axes” of the distributions are
To separate intramolecular from residual reorientational parallel to they: and y» axes, indicating that the local

overall motions, the coordinates were postprocessed by aligninggctyations are not correlated. The slightly unequal population
the principal axis system (PAS) of the molecular inertia tensor, of the two energetically equivalent states is due to the limited

which is only weakly modulated by the internal motions, for \1p simylation time. F6, populating six different substates, has
every frame with a reference frame (snapshot after 10 ns). Since

. ; . . I I > a more complex behavior. Interestingly, the equilibrigm
there is no rigorous separation of internal and overa motion, \,1ues depend on the rotameric state. Thus, the and >
alternative methods of removal of overall motion are also

. . jrump motions are correlated due to interactions of the side chain
applicable, such as a least-squares superposition of atoms. Fo

h . £ NMR rel . h leeul with other residues. As in F9, the local, y2 distributions of
the computation o relaxation rate constants, the molecular gg p5,/q nearly Gaussian character. A statistical analysis of the
tumbling was introduced with the assumption that the overall

tumbli tion is ISOroDi local dihedral angle fluctuations and rotamer populations is given

umbling motion IS Isotropic. in Table 1. The fluctuations i, refer to the usual definition
(35) (a) Schmidt, J. M.; Bischweiler, R.; Ernst, R. R.; Dunbrack, R.  Of x1 as the dihedral angle NC*—CP—Cr. For the order

L., Jr.; Joseph, D.; Karplus, M. Am. Chem. S0d.993 115 8747-8756. parameter of the &-H? bond vector, however, the fluctuations

Q’%Bgﬁé‘;' gbggs’gq%rﬁgf%‘gg F.’Bohweiler, R.; Ernst, R. Rl. of the dihedral angle NC*—CP—H? are more relevant. They

(36) Brischweiler, R.; Roux, B., Blackledge, M., Griesinger C., Karplus, &ré gi‘_/en in parentheses in Table 1as well. Because the
M.; Ernst, R. RJ. Am. Chem. Sod.992 114, 2289-2302. potential for the G-C—H bond angle is softer than for the
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Local dihedral angle motion can be more quantitatively
assessed by the computation of the potentials of mean force

a Wi(xi) = —KT In pi(xi),3° wherepi(yi) are the probability density
functions of they; or the y» dihedral angle. The resulting
180 potentials of mean force for F6 and F9 are shown in Figure 5.
Superimposed are parabolic approximations for the potential,
120 f which agree well with the original potentials for free energies
i lower than about 6 kJ/mol above the minimum. Thus, at room
60 | temperature, F6 and F9 experience for more than 90% of the
— i time a nearly perfect harmonic potential. These findings are
g of supported by the correlation function analysis presented in the
:n following section.
> 60 3.3. NMR Correlation Functions and Plateau Values.
- Carbon-13 nuclear spin relaxation of the phenylalanine side
-120 ¢ chains is governed by dipolar and chemical shielding anisotropy
- (CSA) interactions. The power spectral density functions
-180 bl e determining the relaxation parameters can be calculated as the
240 -180 -120 -60 0 60 120

Fourier transforms of the dipolar and CSA correlation functions.
X1 [deq) In most cases, it can be safely assumed that the overall molecular
tumbling and the intramolecular conformational mobilities are
uncorrelated. The angular part of the cross-correlation function
of two axially-symmetric tensor interactionsandv, or of the
autocorrelation function of an interactiop, = v, is then,
assuming isotropic rotational diffusion with correlation time
given by

tot o |tteint
C‘uv(t) =e C,Lw(t) (1)
where the internal parCiTvt(t) is calculated from the MD

trajectory, sampled &l snapshots with time increment, by
the expression

420 1 Nk3(E,e) -1

CM(kAY) = 2
[ Ay == 5 ” )
-180 L— i
240 -180 -120 -60 0 60 120 (k=0,...,N—1)
A1 [deg]
wheree,; is the direction of the symmetry axis of the axially-
C symmetric interaction tensqr at snapshot as seen from a
molecular fixed frame. The interaction strengths enter in the
form of constant prefactors as given in the Appendix (eqs-A26
180 v A30). Equation 2 can also be used for a non-axially-symmetric
] CSA tensor, utilizing the well-known fact that a non-axially-
120 i symmetric tensor can be represented as the sum of two
7] orthogonal axially-symmetric tensors (see the Appendix). We
60 ] focus here oriC relaxation of—CH,— fragments where the
i i correlation between relatively slow angular and very fast
EN ot i distance fluctuations can be neglected. Rapid distance fluctua-
= ] tions will only influence the effective average internuclear
60 1 distances (eq A26). A
7 For u = v, the autocorrelation plateau value ©f.(t) for t
-120 ] — co corresponds in theory to the order paraméf{eﬂr2 Since
N 1 for longer timeskAt the statistical uncertainty fc@”;(kAt) in

240 180 120 60 O 60 120 eq 2 increases, in practi@ is often computed as the average

Y1 deg] of (3(esi*e.j)? — 1)/2 over all paird, j requiring N(N — 1)/2

1 evaluations of the scalar prodi#t.The same value fo can

Figure 4. Scatter plots ofc2 vs x1 over the 100 ns trajectory for (&)  pe obtained more efficiently by the relationstip
F6 and (c) F9. A total of 10 000 snapshots are shown, and the individual
distributions of y; and y, are plotted as histograms along the
corresponding axes. (b}, y2 distribution of F6 after elimination of f=1-— Z p
the correlation betweep andy. jumps (see text). Y,

5 2 “an ®3)

C—C—C bond angle, the dihedral angled€*—C;—H? shows whereYan(6(t), ¢(t)) are second order spherical harmonics and
slightly larger fluctuations than NC*—CF—C>. 0y = Wom* Yom[O— Yom* (IY2mCis the second moment &b,
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Table 1. y; Rotamer Populations and Local Fluctuation Amplitudes in Antamé&nide

1= —60° ¥ =180 1= +60° 22
pi (%) o1, (deg) pu (%) o1 (deg) pu (%) o1 (deg) 02 (deg)
F6 48 126 (13.2) 43 135 (14.9) 9 13.0 (13. 25.7 (32/19/24)
F9 100 12.7 (14.0) 0 0 17

2 Local fluctuation amplitudes are defined as standard deviatiogs(dihedral angle N-C*—CF—C) andy (dihedral angle &-CF—Cr—C?%)
calculated from the 100 ns SD trajectobyvalues in parentheses refer to the dihedral angteCN—C/—H?. ¢ Fluctuation amplitudes have been
evaluated individually for each of the thrge rotamers.

a C
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£ £
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2 5l 2 st
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Figure 5. Potentials of mean force along the dihedral angleandy, of F6 and F9 extracted from the 100 ns trajectory (solid lines). The dotted
lines indicate the best parabolic fits. In (b) the thin dotted line indicates the potential of mean force before elimination of the correlation between
x1 andyz jumps (see the text).

Equation 3 can be formulated in real quantities by expressing For the correlation functions of F6 (except-€H®), the very
the spherical harmonics in terms of Cartesian coordinates:  rapid decay is first followed by a decay with a time constant of
about 100 ps, and then by a further decay with a time constant
§=1- (3/4)[3%+ aiz_yz + 4(0)%y + 0§z+ a2)] 4 inthe 1 nsrange. The decay processes are due to the rotameric
exchange iry1, which is the cause of the small plateau values
wherex(t), y(t), andz(t) are the Cartesian components of the for all side-chain correlation functions of F6. Note that, for F6
internuclear unit vectog at different snapshofsandoy? = {0 and F9, the vector pairs’&-Hd1, C2—H<2 and G2—H?%2, Cel—
— [3 is the variance of the real functidie). Equation 4 is H<! behave identically, since they are collinear. In addition,
well suited for the calculation of? for a large number of the presence of 180jumps in y2 makes the two pairs
snapshots avoiding complex arithmetic and requiring only a equivalent® and all four vectors exhibit identical correlation
single loop over the trajectory. It has been used foSadirder functions referred to as%€—H%. The only large-amplitude
parameters calculated in this work. Cleafyjs only meaning-  slow-time-scale mode of F9 is visible in thés€ Ho¢ correlation
ful if for long times C;j‘;(t) fluctuates with small amplitude  function and is due to 18lips in 2 with a time constant of
about a plateau value. This should be tested by inspection of1.4 ns.
the correlation function, which can be calculated for long  Some further, more detailed observations in Figure 6 are
trajectories at a resolution lower thai to save computer time.  worth mentioning. The two £H? vectors of F6 exhibit nearly
The correlation functions for F6 and F9 are given in Figure indistinguishable correlation functions whereas for F9 a small
6. All autocorrelation and cross-correlation functions show a difference on a nanosecond time scale is visible. The same
fast initial decay within a few picoseconds. It is of similar mode seems to affect the*€H® and the G—H¢ systems as
magnitude for the corresponding correlation functions of F6 and well. It reflects angular motion which does not modulate the
F9. While for the C—H® autocorrelation functions the decay y, dihedral angle. The total magnitude of such modes can be
is about 10%, it is more pronounced for thé-E’ vectors, visualized by plotting the probability distribution of the tip of
where it is about 15%. In both F6 and F9, the-Ei¢ vector the G—H#2 vector in the molecule-fixed frame (Figure 7). The
of the aromatic ring experiences motion very similar to that of nearly Gaussian shaped probability density of this vector on
Cf—HF vectors since the ©&-H¢ vector is collinear with the  the rotational cone about the*€C? axis demonstrates that the
Cf—Cr axis and is thus unaffected by motion abgut The CP—HF2 vector is in fact dominated by motion aboyi.
amplitude of the fast decay of the autocorrelation and cross- However, despite its small amplitude, the influence of the
correlation functions of the vectors experiencing motions about nanosecond mode on spin relaxation can become important as
x1 andyz is even larger (2540%), reflecting the cumulative  will be discussed in the following section.
effect of the local fluctuations about the two dihedral angles.  Tqg |earn more about the sensitivity of the NMR relaxation

(37) Chandrasekhar, 1.; Clore, G. M.; Szabo, A.; Gronenborn, A. M.; Parameters on the .Correlat?gandXZ motion of F6 (see Figure
Brooks, B. R.J. Mol. Biol. 1992 226, 239-250. 4a), NMR correlation functions (eq 2) were calculated for a
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Figure 6. Autocorrelation and cross-correlation functions of F6 and F9 that are relevant for NMR relaxation calculated from the 100 ns trajectory.
The time behavior is shown of the autocorrelation funtions of the vectors albngl€(a), C—H? (8) (average of €-H* and G—H#? functions),

Co—H?¢ (6¢) (average of €—H? and C—H¢ functions), and €&-H¢ (£) and along the direction normal to the ring plang 6f F6 and F9. Also

given are the cross-correlation functions between the directionefkl< and the ring normalde x 0) and between the direction of€H? and

the ring normal £ x 0). For F9, the correlation functions forf€HA! (31) and G—HF? (B2) are slightly different and are plotted separately.
Fast-time-scale behavior up to 250 ps is shown in Figure 6c,d for F6 and F9, respectively. While the auto-correlation functions stériator

1.0, the cross-correlation functions of orthogonal vectors stag(abs 90) = —0.5.

however, that for other side-chain geometries and time scales
such correlation effects can become more important.

i
i “\\\\ 3.4. Emerging Motional Picture: GAF & Jump Model.
’l' .“‘“\\ From the analysis of the LD trajectory the following motional
' M\\i\ picture emerges: F6 and F9 undergo Gaussian axial fluctuations

Probability

abouty, combined with 180flips. For F9, motion about; is
7, A unimodal and Gaussian, whereas for F6, the three rotamers are
X // populated with the ratio 0.48:0.43:0.09. The motion in each
/ rotamer is in good approximation harmonic with correlation
. S ) times in the picosecond range. We term this motional behavior
Figure 7. Probability distribution of the tip of the/tf"_'ﬁz vector of consisting of local Gaussian axial fluctuations and interrotameric
F9. The_z axis is chosen parallel to the average-C* direction, and jump motions the “GAF & jump model".
they axis points along the averagé-€H#2 bond vector. ; . . .
The Gaussian fluctuations jn andy, can be characterized

second trajectory which was derived from the first one. Inthe py fluctuation amplitudes; and o, and correlation times;
second trajectory, the correlation has been artificially removed gng 7, respectively, and the interconversion rate constant

Y =

by shifting they, angles of all snaps_hots populating the= between the two rotamers jp is ko = (Tj;mp),l_ For F6, the
—60° rotamer fb);]Am =_|__6_5 ' T|’:IS Iargel;rq removes the  gameric exchange iy is determined by interconversion rate
dependence of thg, equilibrium values on theg; rotameric constants; = Ti;lj (i.j =1, II, Ill), and the corresponding

state (see the scatter plot Figure 4b), and the spatial part of therotamer populationg; obey the principle of detailed balance

jl.Jmp corr_elation betwe_e;_al andys is eI_ir_ninate_d. The correl._sl- pi/p; = ki/ki. An analytical form of the NMR correlation
tion functions for the original and modified trajectories are given funi:tion fJor the GAF & jump model is described in detail in

P ) s . .
n F|gurg 8. Wh"e the & He autocprrelanon function, the Appendix, with the general expression of the relevant NMR
responsible for dipolar relaxation, remains almost unaffected, correlation functiorC,(t) given in eq A23

v .

the ring-normal and cross-correlated CSA correlation functions
are quite susceptible to this correlation effect. The latter
correlation functions enter only into the relaxation expressions
for non-axially-symmetric CSA tensors, as is described in the The GAF & jump model has been designed to describe the
Appendix in eq A30. Because even at the highest magnetic y1 andy- fluctuation properties of F6 and F9 observed in the
fields used in this work, the dipolar relaxation exceeds the CSA LD simulation. In this section, we test how accurately we can
relaxation by at least a factor of 5, the correlation effects on retrieve the relevant parameter values from NMR T; and

the measurable relaxation rates remain small. It is estimated{'H}13C NOE relaxation data calculated directly from the MD
using the correlation functions given in Figure 8 that the correlation functions. Such a test is important, since relaxation
correlation modifies the relaxation of side-ch&i@ by less than parameters depend in a highly nonlinear way on the molecular
1% and is very difficult to measure. It should be noted, fluctuation properties. Particular attention is paid to the

4. Sensitivity Analysis and Consistency Test
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Table 2. Fit of 2D GAF & Jump Model Parameters of F9 for DifferentValue$

model fits direct LD
parameters 7. =0.150 ns 7. = 0.800 ns T.=5ns 7.=15ns estimate
211 o1 (deg) 16+ 0.7 (15) 164+ 1.2 (15) 134+ 0.6 (15) 4.5+ 0.1 (15) 14¢
TfAF = 1/D; (ns) 0.13+ 0.09 (0.021) 0.122- 0.07 (0.020) 0.212- 0.05 (0.023) 0.34- 0.05 (0.026) 0.02%5
X2 o, (deg} 13+ 2.0(13.5) 15+ 2.0 (13.6) 18+ 1.7 (12.1) 25+ 1.5(10.2) 1v
,izump (ns) 2.6+ 1.5(2.6) 2.7+ 1.5(2.6) 2.86£0.9(2.7) 3.1+ 0.6 (2.7) 25

a Fitted values after the removal of the 500 ps slow-time-scale contribution to the correlation function (see text) are given in parentheses. The
errors limits are determined by a Monte Carlo procedure consisting of 100 fits with random errors of 2% standard deviation ad@edrd all
NOE relaxation data computed from the LD trajectdrRefers to the dihedral angle-NC*—CFf—H?. ¢ Root-mean-square (rms) dihedral angle
fluctuation.® Obtained by conversion of the correlation time of the dihedral fluctuatien1.5 ps to the value entering the GAF & jump model:

797 = 1/012 = 1/D; (see eq A12)¢75"F < 0.01 ns for allz; values. Estimated value from LD:S*F = 0.02 ns.
influence of the overall tumbling correlation time on the a
extraction of intramolecular motional properties. For this 1.0
purpose,T; and#n values have been calculated directly from 0.8
the trajectory (using egs 1, 2, A5, A26, A27, and A30) for three 0.6
distinct phenylalanine side-chain CH system&-{&#, Co<— — o4
Ho¢, and G—H?) at three differentBy-field strengths corre- 5 Clepeato
sponding to 400, 600, and 800 MHz proton frequency. This 02y
results in 2x 3 x 3 = 18 relaxation parameters for each side 00 _TL‘
chain. Transvers@&, relaxation data are not included since in 0.2 F e ppecross od
practice they often contain contributions from chemical shift 0.4
modulations due to slow conformational dynamics. The latter 0 0.5 1 15 2
tend to be difficult to separate from the dipolar and CSA tins]
relaxation mechanisms considered here, requiring rotating frame
T1, measurements where often the accessible range of radio- b 10
frequency fields is limited. 08
To obtain accurate analytical expressions, all internal auto- 0'6

correlation and cross-correlation functions were fitted by a
multiexponential decay consisting of six exponentials and a o 04r

plateau values?: © 02}
0.0
6 6 02
cy=5+SYAe" where §+SA=1, A, ;>0 _0'4 ClHGoross mod
. . 5) 0 05 1 15 2

t [ns]

While no general phyS|caI meaning IS aj(trlbuted to t'he param- Figure 8. Comparison of the correlation functions with and without
eters{A} and{z}, this parametrization will allow manipulation  gjimination of the correlation between jumps between the different
of the correlation functions by setting a spechicvalue to zero  minima of F6. The correlation functions of the original and the modified
to study the influence of a specific time-scale range on trajectory are given as bold and thin lines, respectively. (a) Auto-
relaxation. The NMR relaxation parameters were then calcu- correlation function of the €—H?¢ vectors (see the text) and cross-
lated by inserting eq 5 into eq 1, assuming an overall tumbling correlation function of the ring normal with the*&-H?¢ vectors. (b)
correlation timer,, followed by analytical Fourier transforma- Autocorrelation function of the ring normal and cross-correlation
tion. The equations used for the calculationTafandy are function of the ring normal with the & H¢ vectors.
given in the Appendix (egs A26, A27, and A30). The calculated
relaxation parameters include contributions frsf®—'H dipolar
and®3C CSA relaxation mechanisms. For the phenyl ring, the
same CSA tensors have been used as in ref 24 with principa
axis valuess;; = 118 ppm (parallel to the €H bond), o =
—97 ppm (orthogonal to the ring plane), ang, = —21 ppm
(orthogonal to the other two axes). A table containing{thg
and{t;} parameters is included in the Supporting Information.

The tumbling correlation time. has been set to different
values to mimic biomolecules of different sizes: 150 ps
(corresponding to the tumbling correlation time of antamanide
in CDCl; at 320 K4, 800 ps, 5 ns, and 15 ns. For eagh
value, the GAF & jump model parameters have been determined
by a least-squares fit using the simplex algorithms imple-
mented in the software package MATLAB for matrix manipula-
tions3°

For F9, the model consists of Gaussian fluctuationg iand
180 y» jumps of the ring, betweegp, = +£90°. The results of

these fits are compiled in Table 2. The indicated error intervals
are obtained from a Monte Carlo error analysis, where in 100
|Separate runs random Gaussian errors with a 2% standard
deviation have been added to fheand NOE relaxation data.
For the fitting of F6, additional rotameric exchange processes
in y1 have been included (Table 3). While the general treatment
of exchange among the thrgerotamers requires five param-
eters, the model used for the description of the motion of F6
assumes that two of the three rotamer populations are the same
(o= pu). The transition rate constants involving the third state,
ki— andky—, are not well defined in the simulation due to
poor statistics. In the model they are assumed to be identical,
Kiit—1 = Ki—11.4°

For F9 they; fluctuation amplitudegs, is well reproduced
for tumbling correlation times smaller than 5 ns (Table 2). The
dependence af; on . is due to the presence of motion causing
reorientation of the &-CF vector, in particular the small
amplitude motional mode withs ~ 500 ps visible in Figure

(38) Nelder, J. A.; Mead, RComput. J.1964 7, 308-313. 6b. In fact, removal of this mode from the correlation functions
(39) MATLAB Reference Guiddhe Math Works Inc.: Natick, MA,
1992. (40) Tsutsumi, AMol. Phys.1979 37, 111-127.
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Table 3. Fit of 2D GAF & Jump Model Parameters of F6 for DifferentValue$

model fits direct LD
parameters 7. =0.150 ns 7. = 0.800 ns T.=5ns 7.=15ns estimate
A1 o1 (degy 15+ 5.9 15.4+ 3.4 15.9+ 3.0 15.8+ 2.5 13.8d
pui® (%) 9+5 9+ 3 10+1 10+1 9
p = pu® (%) 4554+ 2.5 455+ 1.5 45+ 0.5 45+ 0.5 p =43
Pu = 48
r’lﬂ”lp, = t{ﬁ"f” (nsy 3.2+1.8 32+ 1.4 3.2+ 0.2 3.2+ 0.2 3.3
Tmlp (nsy 0.11+ 0.07 0.11+ 0.05 0.15+ 0.01 0.18+ 0.01 0.12
X2 o, (degy 18+ 0.2 17+ 0.2 16+ 0.4 13+ 0.8 25.7
ijump (ns) 0.37+0.02 0.50+ 0.01 0.63+ 0.01 0.49+ 0.04 (0.16)

2 The error limits given are determined by a Monte Carlo procedure consisting of 100 fits with random errors of 2% standard deviation added

to all T, and NOE relaxation data computed from the LD trajectdmf"" < 0.01 ns for allz; values. Estimated value from LD:S*F = 0.02 ns.
¢ Refers to the dihedral angle-NC*—CFf—H?. ¢ Root-mean-square (rms) dihedral angle fluctuatfobsolute rotamer identification is not possible

from fitting relaxation data’ z{ﬂ;“’ = pi/Ni—; whereN—; is the number of transitions from rotameric state rotameric stat@ 975" < 0.01 ns for
all 7. values. Estimated value from LD:*F = 0.02 ns. See caption of Figure 3.

for Cf—HF and G—H¢ yields excellent agreement withy The consistency analysis of F6, summarized in Table 3, yields
determined directly from the LD trajectory irrespective wf a slightly overestimated fittedy. The reason lies in the presence
(values in parentheses in Table 2). Despite its small amplitude, of phenyl ring bending motion, which is independent of dihedral
this mode also has an effect on the apparent internal motionalangle fluctuations aboyt andy, and which reduces the order
correlation timer; abouty; as is seen by comparing the fitted parameteis® of C:—H?¢ to 0.16 compared to 0.20 for’€H?.

71 values in the presence and the absence of this mode (valuesSince this additional motion is not explicitly included in the
in parentheses). For slower molecular tumbling, the influence GAF & jump model, it leads to an increased fitted valuesof

of this mode on the relaxation rates becomes increasingly ~ 15.5° compared to 13estimated from the LD trajectory. The
dominant, and forr, = 15 ns the fit of the computed NMR ~ C%—H?¢ vectors, on the other hand, are less affected by the
data seriously underestimates This unexpected behavior can  bending mode, and the fitted values®fare underestimated,
be understood as follows. Heteronucl@aandy values sample compensating for the overestimated motion abgut As for

the power spectral densitlfw;) at frequencies; = wc, wc £ F9, the two phenyl ring rotamers are not exactly 1:1 populated
wn. J(wi), which corresponds to a sum of Lorentzian functions, in the LD simulation due to the finite length of the trajectory,
becomes small for either very large intramolecular correlation causing a decrease of the fitted value.

timesz (wit > 1) or very short correlation times(r < 1) and In summary, application of the GAF & jump model to the
is largest in an intermediate range, whexe ~ 1. The 500 ps simulation data gives for both residues reasonably good agree-
motional mode falls into this intermediate range and dominates ment, as long as the overall tumbling of the molecule is not too
for slow tumbling the spectral density contributions originating slow. Forzc < 5 ns thes; and o fluctuation parameters can
from the fast Gaussian fluctuations. Hence, the apparentbe retrieved with reasonable accuracy from Theand NOE
effective intramolecular rate constant™* and the associated data calculated from the LD trajectory at three differ@ntield
fluctuation amplitude are both reduced. This phenomenon is strengths. The intramolecular diffusion constants are remarkably
not specific for the GAF & jump model and occurs also, e.g., Sensitive to the presence of a small-amplitude slow-time-scale
in a model-free analysis. To our knowledge, this phenomenon dynamical mode. In particular, fat > 5 ns this mode starts
has not been addressed in the literature and should becomdo contribute significantly to the relaxation parameters, biasing
relevant in the context of relaxation studies of large bio- strongly the estimates fer, ando; as this additional intermedi-
moleculesT; andz values remain highly sensitive to internal ~ate-rate motion is not explicitly parametrized in the model.
motions in thewit ~ 1 regime even for large tumbling

correlation times while very fast and very slow intramolecular 5. Application to Experimental Data

processes become _requation-inactive. In '_[his limit, the system  the GAF & jump model can now be applied to the
assumes nearly solid-like behavior. T, which samples also
J(0), is included in the fit, the very fast internal motions maintain
their dominant influence oil, irrespective oft..

experimental relaxation data of F6 and F9 of antamanide

published previously in ref 24 where 31 relaxation parameters

: have been measured and evaluated for each of the four
For o, of F9, the fitted value fou's is smaller tharus® for phenylalanine residues. The present analysis is restricted to the

shortz. due to the statistical error for thg 180° jumps during 25 standard3C T, and{H}3C NOE parameters measured at

the 100 ns LD simulation, where a population ratio of the two three differentB, fields of 200 (onlyT;), 400, and 600 MHz

x2 rotamers of 0.53:0.47 is observed. Since for symmetry proton frequency at 320 K. (The six parameters related to

reasons, the GAF & jump model intrinsically assumes equal heteronuclear two-spin order, which are not widely used, were

populations, the model overestimates the amount of jump motionfound to have minor influence on the fitting results and were

present compared to the LD target. The fit compensates for not included here.) The set of optimum parameter values of

this by reducing the, value, and thus underestimates For the GAF & jump model, determined by least squares fits, is
larger ., 0, increases steadily to compensate for the reduced given in Table 4.

o1 value, because the relevant ring vectors, such %as i@, For F6, a three-site jump model has been applied tggihe
which experience motion aboyt and therefore determing, motion, based on the results of sections 3 and 4. Two
are not significantly affected by the 500 ps mode. Again, populations and two jump rate constants were assumed to be
removal of this mode yields more consistent fits fos, equal: p, = pu, T'lfl”lpl = r{fﬂ’”, Table 4 shows that the local
exhibiting a slight decrease for increasing The fitted 75, GAF motion leads to an rms angular fluctuation of 18:%°

time constants (Table 2) are rather insensitive.tand are close ~ and to nearly equal populations of the three rotamers pyith
to the LD estimates. pi = 32+ 13% andpy = 36 + 25%, whereby the uncertainty
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Table 4. Fit of the Model Parameters of F6 and F9 to the tangular potential of half-widtlpmay is given bygflect = Pmad
Experimental Data(z. = 150 ps) V3 =18.5+ 2° and is well comparable with the presently
F6 F9 determined value o6?"" = 16.5+ 3.5°. The corresponding
11 o1 (deg) 10545 16.5+ 3.5 correlation time, indicated as; = 200 ps in ref 24, is
pui ¢ (%) 36+ 25 ill-determined and has to be considered as an upper limit. This
P = pu® (%) 32+13 becomes obvious from the error surfaces of Figures 4 and 5 in
s = Ty (nS) 23+1.5 ref 24. It is not in true contradiction to the presently found
r’,‘fl‘,p(ns) 0.76+ 0.22 valuerfAF < 10 ps.
%2 Z;ngg?r?z) g“li 4.5 3_37'681 3:23 The previous analysis with the;B, model of ref 24 led to

o ay» jump correlation timers™ = 1/k, = 132.2+ 12 ps while

a Experimental*C T; at 200, 400, and 600 MHz ar{dH} *3C NOE i i inplATP —

values at 400 and 600 MHz at 320 K have been used from ref 24. here a Correspondllng correlation tlm]§ 760 & 330.ps_

. AF was found. The discrepancy again shows that by taking into

Errors are calculated using error propagat?brf < 0.01 nsThe tG . ial fluctuati inth | tion dat

relaxation data are rather insensitive to the exact population numbers@ccoun a_u53|ar_1 a?(!a uctua 'O_nsxm € _re a_xa Ion data no

for this tumbling regimed; = 150 ps) (see the text).zS" < 0.01 ns. longer require a significant relaxation contribution from the two-
state jump process, leading to a long and ill-determined
correlation timer,™.

of the numerical values is high due to the relatively large transfer ~ The derived approximate populations of the thygeotamers

time constants),™ = o™, = 2.3+ 1.5 ns and!-]}/ = 0.76 can also be compared with a population analysis based on the

+ 0.22 ns. The time constant for the local GAF motion is fast measured-coupling constant$.4546 The most reliable values

and not accurately measurable witf*™ < 10 ps. The GAF  known today stem from J. M. Schmitit: For F6,p = 30%,

of 4, has an rms value of 184 4.5°, again with a very short ~ Pn = 22%, andpy = 48%; and for FOp, = 88%, py = 12%,

time constantS*" < 10 ps, while the two-site jump process is and pu = 0%. They are in qualitative agreement with the
slow, Tizump > 4 ns, with little influence on the relaxation present flndlng§. It shpuld be noted that a reIaxa'Flon analysis
behavior. is often rather insensitive to the accurate population numbers

It is interesting to compare these results with the analysis of Unless the jump rate constant s in its most sensitive range. For
the full 31 relaxation parameters given in ref 24 where several this reason, itis advisable to combine relaxation &edupling
simpler models have been considered. The present analysis cafi*e@surements for achieving a better accuracy of the motional
be compared with the three-site/two-site jump modgbAand parameters.
with the restricted three-site/two-site jump modeBg?* No
exact agreement with either model is expected because in th
present case, ong transition is faster than the other two, while Molecular dynamics simulations are widely used to compute

for.the restr.icted three-sit(_-} mOdel, two tra.nsitions are allowed Spectroscopic and Scattering properties for direct Comparison
while the third one is forbidden. For the inverse average rate ywjth experimental dat® We use here an extended LD

eConclusion

constant of theyy jumps, 18™ = L&SP + 100 + trajectory for the construction of potentials of mean force, which
1/,™)/3, one finds the values;"™ (GAF + jump) = 1340 cover most of the NMR relaxation-active motions and which
ps, 7™ (model AB,) = 785 ps, andr,™ (model GBy) = are suitable for deriving analytical expressions of the NMR

715 ps. Although the error limits of the involvedvalues are correlation functions. The resulting model contains a minimal
considerable, one can attribute the slower jump process in thenumber of parameters whose values can be determined by
GAF & jump model to the separation of the motion into jump comparison with experimental data. The deduction of qualita-

processes and fast Gaussian axial fluctuations. tive features of the analytical model from the LD simulation
The previous analysiédelivered for the two-site jump motion ~ represents an improvement over the otherwise often subjective

of F6 abouty, a well-defined correlation times™ = 1/k, = process of model selection in the course of data interpretation.

81.6 + 8 ps (assuming model,85). In the present analysis In this study, the GAF & jump model emerged for the

where this motion has been divided into a local GAF motion phenylalanine side-chain motion in antamanide and allowed us
and a superimposed two-site jump process, the correspondingo attribute motion reflected in NMR relaxation data to the
correlation times are ill-determined WiﬂfAF < 10 ps and relevanty; andy, motional degrees of freedom. A sensitivity
'™ > 4000 ps. The latter has no effect on relaxation, and the @nalysis yielded valuable insight into the interplay between
only relevant motional parameterds = 18.4+ 4.5°, reflecting correlation times, motional amplitudes, and experimentally
the partial averaging of the involved interactions. The consider- accessible relaxation parameters. It also demonstrates the
ably larger value off“™ determined from the experimental feasibility and limitations of extracting the relevant motional
data in comparison to the values from the LD simulation (see Parameters that determine experimental relaxation data.

Table 3) can at least partially be explained by the elevated This protocol is particularly suitable to describe the dynamics

temperature of 400 K in the simulation. of a subsystem involving a relatively small number of motional

The relaxation-active motion of F9 can be described by a modes, such as an amino acid side chain attached to a relatively
standard GAF model for; with o3 = 16.5+ 3.5° and7oA" < rigid polypeptide backbone. In cases of slow, relaxation-inactive
10 ps while fory, GAF & jump motion seems appropriate. The backbone mobility that may influence the side-chain dynamics,
fluctuations witho, = 13.8+ 4.5 are again fast with5"" < (41) Schmidt, J. M. To appear Bupramol. Struct, Funct.

10 ps and have a mere averaging effect. On the other hand, (42) zare, RAngular MomenturrWiley-Interscience: New York, 1988.
the two-site jump motion has Witw;mp = 760 & 330 ps a (43) Brischweiler, R.; Case, D. &Rrog. NMR Spectrosd.994 26, 27—
58

correlation time that weakly inﬂuence_s relaxation. (44) Werbelow, L. G. I'NMR Probes of Molecular DynamicSycko,
The F9 results can be compared with the mod@kof ref R., Ed.; Kluwer: Dordrecht, The Netherlands, 1994; pp-2263.

24 with restricted rotational diffusion and a restriction angle 75(15%15528;'”99“03 Sgrensen, O. W.; Ernst, RJRViagn. Resor.987,

$max= 32+ 3% in y; and two-site jump motion igz. The rms 7(46) Kessler, H.; Mler, A.: Pook, K.-H.Liebigs Ann. Chenl.989 903—

fluctuation amplitudes’™™ corresponding to motion in a rec-  912. Kessler, H.; Bats, J. W.; Lautz, J.,"Mu, A. Ibid. 1989 913-928.
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it is possible to investigate the side-chain dynamics and the = (co€ a)oi? + (sir? a)o,? and 6,2 = (Sir? a)o,? + (co
resulting NMR relaxation independently for several backbone a)o,2. The correlation coefficient betweeny; and y» is
conformations and to average the results. In many situations,determined by

one can expect that the qualitative features of the side-chain

dynamics are not affected by the backbone mobility such that LU ) (ol2 - 022)
the study of a single backbone conformation provides sufficient r=-——, —(cosasina)— ——— (A4)
information for establishing a motional model for the side XX X%

chain(s) under investigation.

Situations are conceivable where the proposed approac
becomes less suitable. For highly flexible molecules with
numerous degrees of freedom requiring a large number of mode
parameters, it may be difficult to obtain sufficiently good
statistics to derive a reliable motional model. Moreover, the
emerging model may be too complicated to allow for analytical po
expressions of the NMR correlation functions. In biomolecules
with a rather well-defined average structure, on the other hand,
we can envisage a large class of motional processes where th
described protocol is promising for deducing motional properties - s ing
that are of relevance for understanding the molecule’s function. SyStem) along the (time-independent) direcQjfi® = (6, ¢).

The ring system has itsaxis parallel to the internuclear’€

The approach presented here combines complementary : OGRS ; . -
information from molecular dynamics simulation and NMR ~C- vector and thecaxis lies in the ring plane, while theaxis

relaxation. Its application to side-chain motion illustrates the IS Perpendicular to the plane. The ring system is attached to
necessity for such a unified approach to overcome the inherentth€ Polypeptide backbone via the two dihedral angig and

ambiguity of the relaxation data with respect to their detailed x2(0): Whose axes intersect at the¢-€’—C bond angle =
physical interpretation. 109. The backbone frame is related to the laboratory frame

by a rotation through the three time-dependent Euler angles,
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fully acknowledged for stimulating discussions. This research  In isotropic liquids, the angular part of the power spectral

was supported by the Swiss National Science Foundation. ~ density function of two normalized axially-symmetric rank 2
tensorsu andv is

hThus,r =0 foro; =oz0ro =0, 72, andr = £1 for oy =

0 or oz = 0 (if a = 0, /2). Although the relevant NMR
Icorrelation functions calculated from the LD trajectory do not
show significant correlations between the local fluctuations of
x1 and y2 (Jr] < 1), the following treatment includes this
ssibility.

NMR Correlation Functions. The NMR correlation func-
tions are calculated here for an axially-symmetric second-rank
densor, such as an internuclear ve@opointing in a coordinate
system which is rigidly attached to the phenylalanine ring (ring

Supporting Information Available: A table giving the
amplitudesA; and time scales; of eq 5 which characterize the J (@)= f°° C. (e ' dt (A5)
correlation functions of F6 and F9 derived from the MD “ e
simulation (1 page). See any current masthead page for orderin

Quith the correlation functiorC,,(t) given b
and Internet access instructions. wl®) 9 y

Cut) = 7Y QD) Yo' (0D (A6)

"

Appendix

Motion in the 2D Harmonic Potential. We consider &  \yhere Q(t) describes the orientation f in the laboratory
molecular side chain with two rotational degrees of freedom ¢\ Starting out fronYa(Q"™™), Yao(Q2(t)) is obtained by
) u I u

given by the dihedral anglgs= (1, x2) and the 2D harmonic {5, gy ccessive rotations: (i) rotation aboty, (ii) rotation
potential about they axis of the ring system by the bond angte-j3,
(iii) rotation about—y1, and (iv) overall rotational tumblind(t).
Using the transformation properties of spherical harmaotfics,
one obtains

V(xw 12) = Axa + 2C, + By (A1)
We select, for the moment, the origin gf and y» such that
0= 0 and [,00= 0. Using a standard procedure, the _
i s ; : YadQ500) =
2

probability distribution is obtained by transforming to normal
coordinategyy’ andyy'":

V(' x2) = /11)(% + /12965' (A2)
wheredio= (A + B + ((A — B)2 + 4C)13)12, y = Ry,

z DE(@(1) D (—xa(t), =B, —x2(0) Yl Q") (A7)
k=2

whereD®(a,8,y) denote Wigner matrix elements:

_[ cosa sine D@ fy) = e dPp) e (A8)

—sina cosa

Insertion of eqs A7 and A8 into eq A6 yields
and o = atan (§; — A)/C) where (cosa, sin o)7 is the
eigenvector tdl;. a is the tilt angle of the principal axis of the 2 , )
ellipse defined by eq Al with respect to the axis. y1' and C,.() = 4x Z (D (1) Dig*(P(0))0x
x2 are stochastically independent random variables with Gauss- klk,r=-2
ian probability distributions [0 g k20 1Oy @ 7 — gy d(7—p) x
rn * rn
D) = (2107)  expl 20 b (1=1,2) Ya Q) Va7 (A9)
(A3) The angular brackets indicate a time average, whereby inde-

with variancessi? O kg T/A;, whereT is the absolute temperature.  pendence between internal and overall tumbling motion has been
x1andy, are also Gaussian distributed with? = [},°C— G313 assumed. For isotropic tumbling, one obtains
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DD%)(‘I)(t)) Df,zo)*(CI)(O))D= DDI(S)(q)(t)) D(fl)yo*(CD(O))D= stra]ghtforward way if one assumes that such motion is
6Dt statistically independent of the Gaussian fluctuations and that
(1/5)e ™79y (A10) the harmonic potentials are identical in each rotamer. For this

) ) ) _ purpose we introduce average values for the rotameric
Transformation to normal coordinates according to eq A2 with conformationsu of %1 and x> and denote them by, (u) and

the abbreviations = cosa ands = sin a yields 72(U), respectively. It follows that
2 2
Cw(t) — [k O+e O+l O-s2®) o C#V(t) — KZ [kl e—ik’zz(o)—ilzl(o)%AF «
KK T=—2 =2
—ik'(51'(0)+cx2 (0))—il (' (0)—5¢2 (O KoLl 71 (D) —ikTo(0)—il7 _
eGIDt(SX(; )+cx2'(0)) (12)(%( )—s2'( ))D>_< | r@ik2(0)+Hl7a() =K 72(0) ||Xl(0)qjmp(4ﬂ/5)e 6Dt d(kf)(n—ﬁ) «
y _ _ rnng rng . .
(4n/5)e ™ dig’(m—p) dii'(m—p) Ya(2,™) Yzw*((fA%l 1)) A=) Yo Q") YuH( QL") (A16)

) . The first average is of the type in eq A13 while the second
We now take advantage of the fact that harmonic averaging ayerage includes averaging over the different rotameric states.
overy:' andy2' can be carried out independently. The result From the standard treatment of the lattice jump model (see, e.g.,
for averaging in the strong friction limit has been given by yef 43); it follows that the conditional probabilitié(w;t|u,0),
Szabo?® which the system occupies at timstatew if it was at time 0

Ca in stateu, obey a master equation
(@M O~ O= expf —(1/2)0, I + n* —

2mnexp{—D,t/o, 3]} (a=1,2) (A12) P=KP with PWOu0)=0,,  (AL7)

where the matrix elemenK[w, is the transition rate constant

and one obtains between sitesi andw. Equation A17 has the formal solution

2

47 '
Cul) =™ 3 dla—p) or—) Yal @) PWi1.0) = [, (n18)
kKT=—2
) 1 In thermal equilibrium all sites are populated with Boltzmann
Yo *(Q0"9) exp — —o,7(1c+ k9® + (Ic + K's)> — populationsp(w) = lim—e P(w,t|u,0). Insertion of eq A18 into
2 eq A16 yields

2

4
Cl) = ge—wtk’k; S d2(r—p) d2(a—p) x

-2 uw

Yo Q") Y H(2)) p(u) x

2(Ic + k9)(Ic + K's) exp —Dlt/olz}]} X
exp{ - %af[(kc —lIs)? + (Kc — Is)* —

2(ke — Is)(Kc — Is) exp{—th/of}]} (A13)  [KY), S I KO 1 exp[—iaf[(m k9 +
2

Fort =0 it follows, after some algebra, th@f,,(0) = Px(e, e,). 12 2
For long timesC,.,(t)efP reaches a plateg?value, given by the (Ic +K9)” = 2(lc + kg)(lc + K's) exp[ —D,t/o;’} ]} x
order paramete8,,?, 1
2 2 2
i C#V(t)eeDt _ SWZ _ ex;{ 202 [(ke—=1s)*+ (Kc —Is)
t—o0
2 4 2(kc — Is)(K'c — Is) exp{ —D,t/v,? } A19
(@l5) 5 dPa—p) ddr—p) Yl ¢ R
kKI=-2 ) In case the rotameric exchange processegi0énd y, are
Yo *(Q0) FyFy (A14) independent, they can be described by two master equations
with kinetic matriceK ; andK, respectively. The average of
whereFy = exp{ —(1/2)[1%0,,> + K20,,2 + 2lko,,0,,r} and the eg A16 can then be split into an average oyerotamersa, b
correlation coefficient has been defined in eq A4. Spin pairs = 1, ...,M and an average oveg rotamersu, w = 1, ..., N:
which experience motions about bogh and y, yield order
parameterss,,2 which carry combined information am?2, 022, [ H OOkt -kz0n =
andr. For a sufficiently large number of internuclear vectors @ O-i17:0) @ 70-K720) A20
probing different orientations, determination of all three pa- qmnpacl %mpm (A20)
rameterss,,, ,,, andr using eq Al4 is possible, provided that
0,2 % 0,2, where
For C—H spin pairs which experience only motion abgut Lo S
such as @—Hpﬁ pgirs, eq Al4 rtlaoduces to thz one-dimegsional @' "XI(O)%“% - Zpl(a)[eKlt]baeMl(b) @ (A21)
GAF modef® a

£=1-3cod6{cod H(1 — e ) +

@J'iz(t)—ik'iz(o)q]mpxz — sz(u)[e'(zt Wueikfcz(W)—ik'J?z(U) (A22)
uw
(1/4) sirf 6(1 — e “)} (A15) _ _ _
This separation has been used together withO (c = 1,s=
Adding Multiple Lattice Site Jumps in y1 and 2. Ex- 0) for the analysis of the NMR relaxation data calculated from

change between rotamers ja and y» can be included in a  the LD trajectory:
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_4“7[—6Dt 2 2) 2) —1+&Ni@2£2 2, 27 _Sﬁ{&]( +w,) —
Cuv(t) - ge kKZ—Z ; uzdkl (m=p) di'(mr—=p) x n= vel 20\47/ \2x Ve Vh Hen W DTy
Yo Q1) Yo H(Q)") p(a)[e ], O x J(oc—o T, (A27)
G 1
p(U)[e" ], g7 exp{ — 0, A1 - whereT; is the total'3C T; relaxation time including the CSA
1 2 contribution.
_ 2 _ T2 2 For an axially-symmetric CSA tensor, one can use the
exp{—D,t/g, })} ex;{ 5% (€ + k% — 2Kk x standard formuia
exp{—th/UXf})} (A23) (1) =i(oII — 0’0l (w0 (A28)
Tijesa 15 ‘

The power spectral density functidp,(w) which enters the
relaxation equations is obtained by Fourier transformation o
C.(t). The Fourier transform of the terms of type

¢ Whereoj andog are the chemical shielding tensor components
parallel and perpendicular to the symmetry axis defined by
Qring.
f(t) = exp(A + B exp(— Dat/gaz)) (A24) ﬂFor a non-axially-symmetric CSA tensor the situation is more
complicated. We use here the fact that any non-axially-
contained in eq A23, can be calculated analytically by using a symmetric tensor can be described as a superposition of two

Taylor series expansion of the outer exponential function, axially-symmetric, orthogonal tensors. In the CSA principal
axis systemy (with Tr{o} = 0) is*
N (A+ B exp(-D,t/o,2)"
f(t) = lim = o 0 0 1 2 0 O 1 -10 O
N A= n! o=10 nyo =§ax0—l 0 +§Oy 02 0
N N n \Anmem exp(—mDat/gaZ) 0 0 o0y 0O 0-1 00-1
iy Y| (A25)
== ml n!

whereoy = oxx — 0zandoy = oyy — 0, CSA relaxation can
where good convergence is usually obtained already for smallthus be described as the sum of two autocorrelated CSA
N. The Fourier transform df{t) can then be represented as a relaxation terms and one cross-correlated CSA relaxation term,
sum of Lorentzians of the form ¥{mDy(1 + (wo?¥

mD,)?)} . D = A A (00 + 0.4 (0200
The autospectral density functidpw) = J,.(w) can be used Ti)csa 157¢ {0:3u(00) + 0y (0 +20,0, ) @)}
to evaluate the standard expressions for longitudinal dipolar (A30)

1 i 1 . )
relaxation of a*C spin attached t&\ protons! where J,(w) indicates that@™ = Q™ in eq A19 points

1 1\ h\2 5 o _s along thex axis of the CSA tensor, and correspondingly in
(?) = NZ)(E) (E) Y vn Ben {33,(w0) + Inw), Q" = Q" points along the axis of the CSA tensor.
b For the cross-correlation terdy(w), Q/Z'“g is parallel to thex
axis whileQ{" is parallel to they axis. The totall;~%, which
enters also eq A27 for the NOK, is thenT; ™1 = (Ty Hp +
(T1 Hesa- It is noted here that the CSA treatment used in eq 4
of ref 24 is correct only for an axially-symmetric CSA tensor
internuclear distance. interaction. For the general case of a non-axially-symmetric

The corresponding heteronuclear steady-gtHi# 13C NOE CSA tensor, eq A30 has to be used.
n is JA9636505

J(oc—wy) + 6] (octwy)} (A26)

whereyc andyy are the gyromagnetic ratios of the nuclei and
wc andwy their Larmor frequencies, respectivelyis Planck’s
constant,uo is the magnetic field constant, amdy is the



