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Abstract: A new protocol for the interpretation of NMR relaxation data in terms of intramolecular motion is described.
At first, a long molecular dynamics simulation of the system is generated and analyzed with respect to nuclear spin
relaxation-active motional modes. In a second step, an analytical model is conceived on the basis of the computational
results. Finally, the model parameters are determined numerically by a least-squares fit to the experimental NMR
data. This protocol was applied to the phenylalanine side-chain dynamics in the cyclic decapeptide antamanide. A
100 ns Langevin dynamics simulation was analyzed in terms of dihedral angle fluctuations, correlation functions,
and potentials of mean force. Forø1 andø2, motion in a harmonic potential is observed which is interrupted by
occasional jumps between different rotamers over relatively high barriers. This behavior leads to an analytical Gaussian
axial fluctuation and jump model, which is an extension of the previously proposed GAF model (Bru¨schweiler, R.;
Wright, P. E.J. Am. Chem. Soc.1994, 116, 8426).

1. Introduction

It is nowadays widely recognized that the detailed knowledge
of the average structure of a biomolecule, as it can be determined
by X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy, is insufficient for the understanding of its chemical
reactivity and its molecular interactions. Biomolecular function
is intimately connected to molecular flexibility, and structural
data must be supplemented by information on intramolecular
dynamics and mobility.
NMR is a most powerful and versatile tool for the study of

molecular dynamics.1-3 In particular, nuclear spin relaxation
measurements can provide a wealth of detailed information on
intramolecular mobility. 15N relaxation measurements have
become a standard method for the investigation of the backbone
dynamics of proteins,4 and 13C relaxation is well-suited for
studying the functionally important amino acid side-chain
dynamics.
The design of appropriate motional models for the interpreta-

tion of the relaxation measurements has been a central issue
from the very beginning, realizing that the available measure-
ments are invariably insufficient for a self-contained description
of molecular dynamics. According to Bloch-Wangsness-
Redfield relaxation theory,5,6 the experimentally accessible
information is contained in the power spectral density function
which is the Fourier transform of the correlation function of
the time-dependent lattice parts of the relaxation-active spin
interactions. Since the pioneering work of Woessner,7 who

considered free diffusion and jump motion of an internuclear
vector about a single axis, much effort has been directed toward
the development of improved models. Wallach extended the
model, taking into account free rotations and jump motions about
adjacent chemical bonds along a side chain.8 In subsequent
work, the model was modified to allow for jump motions
between different rotamers and restricted rotational diffusion
within a rotameric state represented by a square-well poten-
tial,9,10 or diffusion within a cone (“wobbling in a cone”).11,12

In the early 1980s, two important complementary develop-
ments began. On the one hand, Lipari and Szabo13 addressed
the problem that experimental relaxation data often do not allow
one to discriminate between different motional models. They
introduced a “model-free” description, where internal motion
is locally parametrized by an order parameter and an intra-
molecular correlation time, thereby preventing a possible
overinterpretation of the data. An extension of this concept has
been described in ref 14. In the model-free formalism, one
refrains from a physical preconception and analyzes the
experimental data in terms of mathematical correlation functions
which themselves are parametrized by a minimum set of time-
scale and order parameters. Such a local description of motion
does not yield immediate information about correlated dynamics
or long-range motions.15 The connection to a physical model
is thereby lost, and the link has to be established in a second
interpretative step. The relation between the model-free de-
scription and the restricted rotational diffusion plus jump model
for aromatic side chains9,10 has been derived by Levy and
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Sheridan.16 A concept, which is related to the model-free
approach, has been proposed and applied by Peng and Wag-
ner17,18aiming at a direct determination of power spectral density
components at various frequencies. As in the model-free
formalism, the physical interpretation of the power spectral
densities has to follow in a subsequent step.
A different approach has been pursued by Levy, Wolynes,

and Karplus19 who calculated for the first time NMR relaxation
parameters on the basis of molecular dynamics (MD) simula-
tions. The trajectories allowed them to estimate the accuracy
of the inherent assumptions in the analytical models, such as
the independence of rotations about different side-chain axes.
It was attempted to overcome the insufficient sensitivity of the
relaxation data for discerning different analytical models by
introducing independent knowledge in form of empirical mo-
lecular force fields. More recently, it has been shown that
normal mode analysis of proteins is applicable for the inter-
pretation of fast-time-scale dynamical effects on NMR
relaxation.20-22

To assess the pros and cons of different approaches, it is
useful to define evaluation criteria. In our opinion, an ideal
model should fulfill three criteria: (I) It should berealisticand
take into account our knowledge on feasible molecular dynamics
modes. (II) It should allow anaccurateexplanation of the
experimental data within the experimental errors. (III) It should
besimpleand involve a minimal number of motional parameters.
The most realistic description of intramolecular dynamics

today is by an analytical force field, allowing for molecular
dynamics simulations mimicking the natural processes. One
may conceive to adjust the force field parameters on the basis
of the NMR data in the hope of obtaining a more realistic and
reliable potential energy surface. This procedure is unfortu-
nately seldom feasible as the number of force field parameters
involved is normally high and surmounts the number of available
measurements. For quasi-harmonic dynamics, in the absence
of jump processes, a collective motional model has been
introduced recently, where NMR relaxation data are fitted by
adjusting amplitudes and directions of collective normal modes.23

The application of an analytical model requires restrictive
assumptions to be made about the NMR-relevant motional
modes, such as small-amplitude local fluctuations or specific
jump or diffusion-type processes. In this way, an interpretation
of NMR data becomes feasible, but will remain highly depend-
ent on the model assumptions. Often several alternatives can
hardly be distinguished on the basis of the available data alone.13

The protocol presented in this work, which is outlined in
Figure 1, combines positive features of the different approaches.
It advocates an analytical model that is based on an MD
simulation rather than obtained by physical intuition, circum-
venting some of the arbitrariness involved in selecting a motional
model on other grounds. The protocol was tested on the
phenylalanine side-chain dynamics in the cyclic decapeptide
antamanide (Figure 2), and compared with an NMR study24

where experimental data are interpreted in terms of rotational
motions aboutø1 and ø2. From the analysis of a 100 ns

Langevin dynamics simulation of antamanide, the motional
picture emerging for the phenylalanine side chains consists of
strongly damped harmonic oscillations within the localized
potential wells, interrupted by occasional jumps between dif-
ferent rotameric states over relatively high barriers. The
presented motional model can be considered as an extension of
the Gaussian axial fluctuation (GAF) model25 to 2 degrees of
freedom superimposed by lattice jump motion, called the GAF
& jump model. Mathematical details of the model are described
in the Appendix. Relations between harmonic motions and
correlation functions26 have been used previously also in the
context of fluorescence anisotropy decay theory.27,28

2. Interpretation of NMR Relaxation Data by a Physical
Model Derived from MD Simulations

The proposed analysis procedure consists of five steps (Figure
1):
(1) Molecular Dynamics Simulation. At first, an MD simu-

lation trajectory of the system under investigation is generated
to identify relevant dynamical modes. The success of the
approach depends crucially on the choice of a reliable and well-
tested force field which faithfully represents the actual molecular
properties. The MD simulation should ideally span at least 10
times the largest internal motional correlation time, but does

(16) Levy, R. M.; Sheridan, R. P.Biophys. J.1983, 41, 217-221.
(17) Peng J. W.; Wagner G.J. Magn. Reson.1992, 98, 308-332.
(18) Peng J. W.; Wagner G.Biochemistry1992, 31, 8571-8586 .
(19) Levy, R. M.; Karplus, M.; Wolynes, P. G.J. Am. Chem. Soc.1981,

103, 5998-6011.
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Figure 1. Outline of the proposed procedure.

Figure 2. (a) Cyclic decapeptide antamanide and (b) the phenylalanine
residue with atom definitions used in the text.
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not need to be much longer than about 10 times the overall
tumbling correlation timeτc. For biomolecules simulation times
of ten to hundreds of nanoseconds are usually necessary and
appropriate, which precludes the full representation of the
solvent interactions, and often Langevin dynamics must be
employed. Obviously, a judiciously planned compromise
between affordable computation time and acceptable statistical
properties of the trajectory must be found. In the present
context, good statistics is mandatory to test whether the
analytical model derived from the simulation can quantitatively
reproduce the NMR relaxation data calculated directly from the
simulation.
It is mostly unrealistic to expect that the MD simulation would

cover the entire ergodic ensemble of possible structures, in spite
of the extensive computation time. It is thus necessary to start
the simulation from a relevant molecular conformation, e.g., a
high-resolution structure obtained by NMR or X-ray. In the
presence of slow intramolecular dynamics modes in the micro-
or milliseconds that cannot be covered by the MD simulation,
several runs with properly selected initial structures should be
performed and the resulting spectral density functions averaged.
(2) Analysis of the Trajectory and Construction of the

Motional Model. Understanding the MD trajectory requires
an analysis of the soft motional degrees of freedom, which often
coincide with the mobile dihedral angles. By means of a
statistical analysis, rotamer populations and their respective
interconversion rates can be estimated. Computation of auto-
correlation and cross-correlation functions of dihedral angles
reveals the relevant motional time scales and the presence of
correlation effects. Furthermore, evaluation of potentials of
mean force29,30along soft motional degrees of freedom, leading
to an effective free energy surface, may allow an analytical
parametrization of the potential surface which is sufficiently
realistic to reproduce qualitative and quantitative properties of
the MD trajectory. An example of such an analysis is given in
section 3.
For the sake of clarity, we sketch conceivable models that

may result from this type of analysis for amino acid side-chain
motions.
(i) Rotational diffusion model: A potential of mean force

that is virtually flat withinkBT for a free or restricted angular
range would suggest an unrestricted or restricted rotational
diffusion model characterized by a rotational diffusion constant
and possibly a rotational restriction angle.7-10

(ii) Gaussian axial fluctuation model: A locally quadratic
potential of mean force, limited by high barriers, suggests a
Gaussian axial fluctuation model, characterized by a variance
σi2 and an effective correlation timeτi.25-28

(iii) Rotational jump model: A potential of mean force with
several narrow minima, separated by barriers of intermediate
height (severalkBT), suggests the application of a discrete
rotational jump model7 with equal or unequal site populations
and a set of transfer rate constants.
(iv) Rotational fluctuation and jump model: A more general

model combines either (i) and (iii) or (ii) and (iii). Local
fluctuations in either a square well or quadratic potential are
combined with jumps between different rotamers. The local
fluctuations are again characterized by a varianceσi2, which
may differ from rotamer to rotamer while the jump processes
are governed by transfer rate constants.

(v) Wobbling in a cone: The significant presence of fast
backbone dynamics may necessitate explicit parametrization of
the motion of the CR-Câ vector, for example, as diffusion inside
a cone.11,12

In situations with two or more segmental motions, such as
in the situation of phenylalanine side chains with aø1 and aø2
rotor, the different processes can also be correlated, requiring,
for example, the use of correlation coefficients to characterize
the combined motion.
(3) Analytical Expression of NMR Correlation Functions

by Model Parameters. At this stage of the procedure, the link
between the parametrized description of the observed MD
motions and NMR relaxation is established. For this purpose,
analytical expressions are derived for the relaxation-relevant
correlation functions depending explicitly on the chosen model
parameters. This step is described in some detail in the
Appendix for the phenylalanine side chains.
(4) Sensitivity Analysis and Consistency Test.There is

no a priori guarantee that NMR relaxation data allow an
accurate and robust determination of the introduced model
parameters. A sensitivity analysis and consistency test, de-
scribed in section 4, is therefore necessary: NMR relaxation
data are calculated on the basis of the correlation functions of
the MD calculation, and the parameters of the model are fitted
to these values. Agreement between the parameters determined
in step 2 and the fitted parameters, and their sensitivity with
respect to errors in the relaxation data, can thereby be assessed.
(5) Application to Experimental Data. A motional model

that passes the consistency test is then ready for application to
experimental relaxation data. The availability of other experi-
mental data, such as scalarJ coupling constants, may help to
improve the accuracy of the determined model parameters.
Finally, the extracted experimental motional parameters may
be compared with the LD results. If the differences are
reasonably small and at least qualitative agreement is found,
the protocol is self-consistent. Larger differences, on the other
hand, may suggest the examination of further motional models,
e.g., extracted by using other force fields or other initial
structures.

3. MD Simulation of Antamanide

3.1. Computational Details. A 100 ns Langevin dynamics
(LD) simulation (stochastic dynamics) was performed for the
cyclic decapeptide antamanide (Figure 2a) using the CHARMM
program with the force-field parameters of version 22.31,32 For
the initial structure, the antamanide backbone structure (++),
determined by the MEDUSA algorithm,33 was chosen and the
cyclic topology of antamanide was treated in an all-atom
approach with explicit hydrogen atoms (total of 162 atoms).
The SHAKE algorithm34 was applied, and the integration step
size was set to 1 fs. No cutoff was used for the nonbonded
interactions. The dielectric permittivity was set to 1.0. Other
detailed accounts of LD simulations of antamanide can be found
in ref 35.
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The simulation temperature was elevated to 400 K for more
comprehensive sampling of the side-chain conformations.
While such a procedure has the potential drawback that the
sampled motion may no longer be representative for the
experimental measurement conditions, for antamanide we have
found that LD simulations carried out at 300 K30,35 and a MD
simulation in chloroform at 250 K36 show motional behavior
qualitatively similar to that observed in the present work. Since
the primary purpose of the MD simulation in this protocol is
the extraction of a qualitative rather than a quantitative dynami-
cal picture, a moderate increase of the temperature is worth
consideration. Rare backbone flips that would disturb the
statistics were avoided by constraining all heavy backbone atoms
by a weak harmonic potential of strength 0.1 kcal/Å2. Obvi-
ously, the backbone conformation may affect the side-chain
mobility, but the qualitative motional models, which shall be
deduced, are not altered (unpublished results). The 100 ns
simulation required four months of CPU time on an SGI Onyx
workstation. The coordinates were sampled every 0.5 ps,
leading to a total number of 200 000 snapshots which required
400 Mbyte of disk space.
To separate intramolecular from residual reorientational

overall motions, the coordinates were postprocessed by aligning
the principal axis system (PAS) of the molecular inertia tensor,
which is only weakly modulated by the internal motions, for
every frame with a reference frame (snapshot after 10 ns). Since
there is no rigorous separation of internal and overall motion,
alternative methods of removal of overall motion are also
applicable, such as a least-squares superposition of atoms. For
the computation of NMR relaxation rate constants, the molecular
tumbling was introduced with the assumption that the overall
tumbling motion is isotropic.

3.2. Phenylalanine Motions. In the present simulation, the
four phenylalanine side chains show a characteristic behavior
in theø1, ø2 rotational dynamics (Figure 2b). F5, F9, and F10
stay for more than 95% of the simulation time in theø1 ) -60°
(I) rotamer. By contrast, F6 shows frequent interconversion
between the-60° and-180° (II) rotamers and rare visits of
theø1 ) 60° (III) rotamer. Theø2 dynamics can be character-
ized for all four phenylalanines by local fluctuations and by
180° jumps. During the 100 ns simulation time the aromatic
rings of F5 and F10 show only 9 and 8 transitions, respectively,
whereas F6 and F9 display better statistics with 313 and 20
transitions, respectively. Since the behaviors of F5 and F10
strongly resemble that of F9, only F6 and F9 are further analyzed
in the following. The time dependence ofø1 andø2 for F6 and
F9 is shown in Figure 3.
Equilibrium properties and correlation effects between the

ø1 andø2 motions are conveniently visualized by scatter plots
(Figure 4). F9 populates two substates (Figure 4c) which
correspond to a∆ø2 ) 180° ring flip. Both ø1 andø2 exhibit
nearly Gaussian distributions as is visible from the histograms
in Figure 4c. The “principal axes” of the distributions are
parallel to the ø1 and ø2 axes, indicating that the local
fluctuations are not correlated. The slightly unequal population
of the two energetically equivalent states is due to the limited
MD simulation time. F6, populating six different substates, has
a more complex behavior. Interestingly, the equilibriumø2
values depend on theø1 rotameric state. Thus, theø1 andø2
jump motions are correlated due to interactions of the side chain
with other residues. As in F9, the localø1, ø2 distributions of
F6 have nearly Gaussian character. A statistical analysis of the
local dihedral angle fluctuations and rotamer populations is given
in Table 1. The fluctuations inø1 refer to the usual definition
of ø1 as the dihedral angle N-CR-Câ-Cγ. For the order
parameter of the Câ-Hâ bond vector, however, the fluctuations
of the dihedral angle N-CR-Câ-Hâ are more relevant. They
are given in parentheses in Table 1 as well. Because the
potential for the C-C-H bond angle is softer than for the
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Am. Chem. Soc.1993, 115, 4764-4768.
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M.; Ernst, R. R.J. Am. Chem. Soc.1992, 114, 2289-2302.

Figure 3. Dihedral angle trajectories of the two phenylalanine residues 6 and 9 of antamanide: (a)ø1 trajectory of F6 (inset shows the full 100
ns trajectory); 387 transitions are observed from the conformer I (ø1 ) -60°) to II (ø1 ) -180°) and 387 transitions from II to I, 3 transitions from
I to III ( ø1 ) 60°), and also 3 transitions from III to I; (b)ø2 trajectory of F6; about 310 ring flips occur during the 100 ns trajectory (due to the
ø1, ø2 jump correlation, the flip count is ambiguous); (c)ø1 trajectory of F9; (d)ø2 trajectory of F9; 20 ring flips are observed.
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C-C-C bond angle, the dihedral angle N-CR-Câ-Hâ shows
slightly larger fluctuations than N-CR-Câ-Cγ.

Local dihedral angle motion can be more quantitatively
assessed by the computation of the potentials of mean force
Wi(øi) ) -kT ln Fi(øi),30 whereFi(øi) are the probability density
functions of theø1 or the ø2 dihedral angle. The resulting
potentials of mean force for F6 and F9 are shown in Figure 5.
Superimposed are parabolic approximations for the potential,
which agree well with the original potentials for free energies
lower than about 6 kJ/mol above the minimum. Thus, at room
temperature, F6 and F9 experience for more than 90% of the
time a nearly perfect harmonic potential. These findings are
supported by the correlation function analysis presented in the
following section.
3.3. NMR Correlation Functions and Plateau Values.

Carbon-13 nuclear spin relaxation of the phenylalanine side
chains is governed by dipolar and chemical shielding anisotropy
(CSA) interactions. The power spectral density functions
determining the relaxation parameters can be calculated as the
Fourier transforms of the dipolar and CSA correlation functions.
In most cases, it can be safely assumed that the overall molecular
tumbling and the intramolecular conformational mobilities are
uncorrelated. The angular part of the cross-correlation function
of two axially-symmetric tensor interactions,µ andν, or of the
autocorrelation function of an interaction,µ ) ν, is then,
assuming isotropic rotational diffusion with correlation timeτc,
given by

where the internal partCµν
int(t) is calculated from the MD

trajectory, sampled atN snapshots with time increment∆t, by
the expression

whereeµ,i is the direction of the symmetry axis of the axially-
symmetric interaction tensorµ at snapshoti as seen from a
molecular fixed frame. The interaction strengths enter in the
form of constant prefactors as given in the Appendix (eqs A26-
A30). Equation 2 can also be used for a non-axially-symmetric
CSA tensor, utilizing the well-known fact that a non-axially-
symmetric tensor can be represented as the sum of two
orthogonal axially-symmetric tensors (see the Appendix). We
focus here on13C relaxation of-CHn- fragments where the
correlation between relatively slow angular and very fast
distance fluctuations can be neglected. Rapid distance fluctua-
tions will only influence the effective average internuclear
distances (eq A26).
For µ ) ν, the autocorrelation plateau value ofCµµ

int(t) for t
f ∞ corresponds in theory to the order parameterS2.12 Since
for longer timesk∆t the statistical uncertainty forCµµ

int(k∆t) in
eq 2 increases, in practiceS2 is often computed as the average
of (3(eµ,i‚eµ,j)2 - 1)/2 over all pairsi, j requiringN(N - 1)/2
evaluations of the scalar product.37 The same value forS2 can
be obtained more efficiently by the relationship25

whereY2m(θ(t), æ(t)) are second order spherical harmonics and
σY2m2 ) 〈Y2m*Y2m〉 - 〈Y2m* 〉〈Y2m〉 is the second moment ofY2m.

Figure 4. Scatter plots ofø2 vs ø1 over the 100 ns trajectory for (a)
F6 and (c) F9. A total of 10 000 snapshots are shown, and the individual
distributions of ø1 and ø2 are plotted as histograms along the
corresponding axes. (b)ø1, ø2 distribution of F6 after elimination of
the correlation betweenø1 andø2 jumps (see text).

Cµν
tot(t) ) e-|t|/τcCµν

int(t) (1)

Cµν
int(k∆t) )

1

(N- k)
∑
i)1

N-k 3(eµ,i+k‚eν,i)
2 - 1

2
(2)

(k) 0, ...,N- 1)

S2 ) 1-
4π

5
∑
m)-2

2

σY2m
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Equation 3 can be formulated in real quantities by expressing
the spherical harmonics in terms of Cartesian coordinates:

wherex(t), y(t), andz(t) are the Cartesian components of the
internuclear unit vectorei at different snapshotsi andσf2 ) 〈f2〉
- 〈f〉2 is the variance of the real functionf(ei). Equation 4 is
well suited for the calculation ofS2 for a large number of
snapshots avoiding complex arithmetic and requiring only a
single loop over the trajectory. It has been used for allS2 order
parameters calculated in this work. Clearly,S2 is only meaning-
ful if for long times Cµµ

int(t) fluctuates with small amplitude
about a plateau value. This should be tested by inspection of
the correlation function, which can be calculated for long
trajectories at a resolution lower than∆t to save computer time.
The correlation functions for F6 and F9 are given in Figure

6. All autocorrelation and cross-correlation functions show a
fast initial decay within a few picoseconds. It is of similar
magnitude for the corresponding correlation functions of F6 and
F9. While for the CR-HR autocorrelation functions the decay
is about 10%, it is more pronounced for the Câ-Hâ vectors,
where it is about 15%. In both F6 and F9, the Cú-Hú vector
of the aromatic ring experiences motion very similar to that of
Câ-Hâ vectors since the Cú-Hú vector is collinear with the
Câ-Cγ axis and is thus unaffected by motion aboutø2. The
amplitude of the fast decay of the autocorrelation and cross-
correlation functions of the vectors experiencing motions about
ø1 andø2 is even larger (25-40%), reflecting the cumulative
effect of the local fluctuations about the two dihedral angles.

For the correlation functions of F6 (except CR-HR), the very
rapid decay is first followed by a decay with a time constant of
about 100 ps, and then by a further decay with a time constant
in the 1 ns range. The decay processes are due to the rotameric
exchange inø1, which is the cause of the small plateau values
for all side-chain correlation functions of F6. Note that, for F6
and F9, the vector pairs Cδ1-Hδ1, Cε2-Hε2 and Cδ2-Hδ2, Cε1-
Hε1 behave identically, since they are collinear. In addition,
the presence of 180° jumps in ø2 makes the two pairs
equivalent,16 and all four vectors exhibit identical correlation
functions referred to as Cδε-Hδε. The only large-amplitude
slow-time-scale mode of F9 is visible in the Cδε-Hδε correlation
function and is due to 180° flips in ø2 with a time constant of
1.4 ns.
Some further, more detailed observations in Figure 6 are

worth mentioning. The two Câ-Hâ vectors of F6 exhibit nearly
indistinguishable correlation functions whereas for F9 a small
difference on a nanosecond time scale is visible. The same
mode seems to affect the CR-HR and the Cú-Hú systems as
well. It reflects angular motion which does not modulate the
ø1 dihedral angle. The total magnitude of such modes can be
visualized by plotting the probability distribution of the tip of
the Câ-Hâ2 vector in the molecule-fixed frame (Figure 7). The
nearly Gaussian shaped probability density of this vector on
the rotational cone about the CR-Câ axis demonstrates that the
Câ-Hâ2 vector is in fact dominated by motion aboutø1.
However, despite its small amplitude, the influence of the
nanosecond mode on spin relaxation can become important as
will be discussed in the following section.
To learn more about the sensitivity of the NMR relaxation

parameters on the correlatedø1 andø2 motion of F6 (see Figure
4a), NMR correlation functions (eq 2) were calculated for a

(37) Chandrasekhar, I.; Clore, G. M.; Szabo, A.; Gronenborn, A. M.;
Brooks, B. R.J. Mol. Biol. 1992, 226, 239-250.

Table 1. ø1 Rotamer Populations and Local Fluctuation Amplitudes in Antamanidea

ø1 ) -60° ø1 ) 180° ø1 ) +60° ø2
pI (%) σ1,I (deg) pII (%) σ1,II (deg) pIII (%) σ1,III (deg) σ2 (deg)

F6 48 12.6 (13.2)b 43 13.5 (14.5)b 9 13.0 (13.1)b 25.7 (32/19/24)c

F9 100 12.7 (14.0)b 0 0 17

a Local fluctuation amplitudes are defined as standard deviations inø1 (dihedral angle N-CR-Câ-Cγ) andø2 (dihedral angle CR-Câ-Cγ-Cδ1)
calculated from the 100 ns SD trajectory.b Values in parentheses refer to the dihedral angle N-CR-Câ-Hâ. c Fluctuation amplitudes have been
evaluated individually for each of the threeø1 rotamers.

Figure 5. Potentials of mean force along the dihedral anglesø1 andø2 of F6 and F9 extracted from the 100 ns trajectory (solid lines). The dotted
lines indicate the best parabolic fits. In (b) the thin dotted line indicates the potential of mean force before elimination of the correlation between
ø1 andø2 jumps (see the text).

S2 ) 1- (3/4)[3σz2
2 + σx2-y2

2 + 4(σxy
2 + σyz

2 + σzx
2 )] (4)
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second trajectory which was derived from the first one. In the
second trajectory, the correlation has been artificially removed
by shifting theø2 angles of all snapshots populating theø1 )
-60° rotamer by∆ø2 ) -65°. This largely removes the
dependence of theø2 equilibrium values on theø1 rotameric
state (see the scatter plot Figure 4b), and the spatial part of the
jump correlation betweenø1 andø2 is eliminated. The correla-
tion functions for the original and modified trajectories are given
in Figure 8. While the Cδε-Hδε autocorrelation function,
responsible for dipolar relaxation, remains almost unaffected,
the ring-normal and cross-correlated CSA correlation functions
are quite susceptible to this correlation effect. The latter
correlation functions enter only into the relaxation expressions
for non-axially-symmetric CSA tensors, as is described in the
Appendix in eq A30. Because even at the highest magnetic
fields used in this work, the dipolar relaxation exceeds the CSA
relaxation by at least a factor of 5, the correlation effects on
the measurable relaxation rates remain small. It is estimated
using the correlation functions given in Figure 8 that the
correlation modifies the relaxation of side-chain13C by less than
1% and is very difficult to measure. It should be noted,

however, that for other side-chain geometries and time scales
such correlation effects can become more important.
3.4. Emerging Motional Picture: GAF & Jump Model.

From the analysis of the LD trajectory the following motional
picture emerges: F6 and F9 undergo Gaussian axial fluctuations
aboutø2 combined with 180° flips. For F9, motion aboutø1 is
unimodal and Gaussian, whereas for F6, the three rotamers are
populated with the ratio 0.48:0.43:0.09. The motion in each
rotamer is in good approximation harmonic with correlation
times in the picosecond range. We term this motional behavior
consisting of local Gaussian axial fluctuations and interrotameric
jump motions the “GAF & jump model”.
The Gaussian fluctuations inø1 andø2 can be characterized

by fluctuation amplitudesσ1 and σ2 and correlation timesτ1
and τ2, respectively, and the interconversion rate constant
between the two rotamers inø2 is k2 ) (τ2

jump)-1. For F6, the
rotameric exchange inø1 is determined by interconversion rate
constantskji ) τifj

-1 (i, j ) I, II, III), and the corresponding
rotamer populationspi obey the principle of detailed balance
pi/pj ) kij/kji. An analytical form of the NMR correlation
function for the GAF & jump model is described in detail in
the Appendix, with the general expression of the relevant NMR
correlation functionCµν(t) given in eq A23.

4. Sensitivity Analysis and Consistency Test

The GAF & jump model has been designed to describe the
ø1 andø2 fluctuation properties of F6 and F9 observed in the
LD simulation. In this section, we test how accurately we can
retrieve the relevant parameter values from NMR13C T1 and
{1H}13C NOE relaxation data calculated directly from the MD
correlation functions. Such a test is important, since relaxation
parameters depend in a highly nonlinear way on the molecular
fluctuation properties. Particular attention is paid to the

Figure 6. Autocorrelation and cross-correlation functions of F6 and F9 that are relevant for NMR relaxation calculated from the 100 ns trajectory.
The time behavior is shown of the autocorrelation funtions of the vectors along CR-HR (R), Câ-Hâ (â) (average of Câ-Hâ1 and Câ-Hâ2 functions),
Cδε-Hδε (δε) (average of Cδ-Hδ and Cε-Hε functions), and Cú-Hú (ú) and along the direction normal to the ring plane (⊥) of F6 and F9. Also
given are the cross-correlation functions between the direction of Cδε-Hδε and the ring normal (δε × ⊥) and between the direction of Cú-Hú and
the ring normal (ú × ⊥). For F9, the correlation functions for Câ-Hâ1 (â1) and Câ-Hâ2 (â2) are slightly different and are plotted separately.
Fast-time-scale behavior up to 250 ps is shown in Figure 6c,d for F6 and F9, respectively. While the auto-correlation functions start fort ) 0 at
1.0, the cross-correlation functions of orthogonal vectors start atP2(cos 90°) ) -0.5.

Figure 7. Probability distribution of the tip of the Câ-Hâ2 vector of
F9. Thez axis is chosen parallel to the average CR-Câ direction, and
the y axis points along the average Câ-Hâ2 bond vector.
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influence of the overall tumbling correlation timeτc on the
extraction of intramolecular motional properties. For this
purpose,T1 and η values have been calculated directly from
the trajectory (using eqs 1, 2, A5, A26, A27, and A30) for three
distinct phenylalanine side-chain CH systems (Câ-Hâ, Cδε-
Hδε, and Cú-Hú) at three differentB0-field strengths corre-
sponding to 400, 600, and 800 MHz proton frequency. This
results in 2× 3 × 3 ) 18 relaxation parameters for each side
chain. TransverseT2 relaxation data are not included since in
practice they often contain contributions from chemical shift
modulations due to slow conformational dynamics. The latter
tend to be difficult to separate from the dipolar and CSA
relaxation mechanisms considered here, requiring rotating frame
T1F measurements where often the accessible range of radio-
frequency fields is limited.
To obtain accurate analytical expressions, all internal auto-

correlation and cross-correlation functions were fitted by a
multiexponential decay consisting of six exponentials and a
plateau valueS2:

While no general physical meaning is attributed to the param-
eters{Ai} and{τi}, this parametrization will allow manipulation
of the correlation functions by setting a specificAi value to zero
to study the influence of a specific time-scale range on
relaxation. The NMR relaxation parameters were then calcu-
lated by inserting eq 5 into eq 1, assuming an overall tumbling
correlation timeτc, followed by analytical Fourier transforma-
tion. The equations used for the calculation ofT1 andη are
given in the Appendix (eqs A26, A27, and A30). The calculated
relaxation parameters include contributions from13C-1H dipolar
and13C CSA relaxation mechanisms. For the phenyl ring, the
same CSA tensors have been used as in ref 24 with principal
axis valuesσzz ) 118 ppm (parallel to the C-H bond),σxx )
-97 ppm (orthogonal to the ring plane), andσyy ) -21 ppm
(orthogonal to the other two axes). A table containing the{Ai}
and{τi} parameters is included in the Supporting Information.
The tumbling correlation timeτc has been set to different

values to mimic biomolecules of different sizes: 150 ps
(corresponding to the tumbling correlation time of antamanide
in CDCl3 at 320 K24), 800 ps, 5 ns, and 15 ns. For eachτc
value, the GAF & jump model parameters have been determined
by a least-squares fit using the simplex algorithm38 as imple-
mented in the software package MATLAB for matrix manipula-
tions.39

For F9, the model consists of Gaussian fluctuations inø1 and
180° ø2 jumps of the ring, betweenø2 = (90°. The results of

these fits are compiled in Table 2. The indicated error intervals
are obtained from a Monte Carlo error analysis, where in 100
separate runs random Gaussian errors with a 2% standard
deviation have been added to theT1 and NOE relaxation data.
For the fitting of F6, additional rotameric exchange processes
in ø1 have been included (Table 3). While the general treatment
of exchange among the threeø1 rotamers requires five param-
eters, the model used for the description of the motion of F6
assumes that two of the three rotamer populations are the same
(pI ) pII). The transition rate constants involving the third state,
kIIIfI andkIIIfII , are not well defined in the simulation due to
poor statistics. In the model they are assumed to be identical,
kIIIfI ) kIIIfII .40

For F9 theø1 fluctuation amplitude,σ1, is well reproduced
for tumbling correlation times smaller than 5 ns (Table 2). The
dependence ofσ1 onτc is due to the presence of motion causing
reorientation of the CR-Câ vector, in particular the small
amplitude motional mode withτ5 ≈ 500 ps visible in Figure
6b. In fact, removal of this mode from the correlation functions(38) Nelder, J. A.; Mead, R.Comput. J.1964, 7, 308-313.

(39)MATLAB Reference Guide; The Math Works Inc.: Natick, MA,
1992. (40) Tsutsumi, A.Mol. Phys.1979, 37, 111-127.

Table 2. Fit of 2D GAF & Jump Model Parameters of F9 for Differentτc Valuesa

fitsmodel
parameters τc ) 0.150 ns τc ) 0.800 ns τc ) 5 ns τc ) 15 ns

direct LD
estimate

ø1 σ1 (deg) 16( 0.7 (15) 16( 1.2 (15) 13( 0.6 (15) 4.5( 0.1 (15) 14b,c

τ1
GAF ) 1/D1 (ns) 0.13( 0.09 (0.021) 0.122( 0.07 (0.020) 0.212( 0.05 (0.023) 0.34( 0.05 (0.026) 0.025d

ø2 σ2 (deg)e 13( 2.0 (13.5) 15( 2.0 (13.6) 18( 1.7 (12.1) 25( 1.5 (10.2) 17c

τ2
jump (ns) 2.6( 1.5 (2.6) 2.7( 1.5 (2.6) 2.8( 0.9 (2.7) 3.1( 0.6 (2.7) 2.5

a Fitted values after the removal of the 500 ps slow-time-scale contribution to the correlation function (see text) are given in parentheses. The
errors limits are determined by a Monte Carlo procedure consisting of 100 fits with random errors of 2% standard deviation added to allT1 and
NOE relaxation data computed from the LD trajectory.bRefers to the dihedral angle N-CR-Câ-Hâ. cRoot-mean-square (rms) dihedral angle
fluctuation.dObtained by conversion of the correlation time of the dihedral fluctuationτ ≈ 1.5 ps to the value entering the GAF & jump model:
τ1
GAF ) τ/σ1

2 ) 1/D1 (see eq A12).e τ2
GAF < 0.01 ns for allτc values. Estimated value from LD:τ2

GAF ) 0.02 ns.

Figure 8. Comparison of the correlation functions with and without
elimination of the correlation between jumps between the different
minima of F6. The correlation functions of the original and the modified
trajectory are given as bold and thin lines, respectively. (a) Auto-
correlation function of the Cδε-Hδε vectors (see the text) and cross-
correlation function of the ring normal with the Cδε-Hδε vectors. (b)
Autocorrelation function of the ring normal and cross-correlation
function of the ring normal with the Cú-Hú vectors.

C(t) ) S2 + ∑
i)1

6

Aie
-t/τi where S2 + ∑

i)1

6

Ai ) 1, Ai, τi > 0

(5)
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for Câ-Hâ and Cú-Hú yields excellent agreement withσ1
determined directly from the LD trajectory irrespective ofτc
(values in parentheses in Table 2). Despite its small amplitude,
this mode also has an effect on the apparent internal motional
correlation timeτ1 aboutø1 as is seen by comparing the fitted
τ1 values in the presence and the absence of this mode (values
in parentheses). For slower molecular tumbling, the influence
of this mode on the relaxation rates becomes increasingly
dominant, and forτc ) 15 ns the fit of the computed NMR
data seriously underestimatesσ1. This unexpected behavior can
be understood as follows. HeteronuclearT1 andη values sample
the power spectral densityJ(ωi) at frequenciesωi ) ωC, ωC (
ωH. J(ωi), which corresponds to a sum of Lorentzian functions,
becomes small for either very large intramolecular correlation
timesτ (ωiτ . 1) or very short correlation times (ωiτ , 1) and
is largest in an intermediate range, whereωiτ ≈ 1. The 500 ps
motional mode falls into this intermediate range and dominates
for slow tumbling the spectral density contributions originating
from the fast Gaussian fluctuations. Hence, the apparent
effective intramolecular rate constantτ1-1 and the associated
fluctuation amplitude are both reduced. This phenomenon is
not specific for the GAF & jump model and occurs also, e.g.,
in a model-free analysis. To our knowledge, this phenomenon
has not been addressed in the literature and should become
relevant in the context of relaxation studies of large bio-
molecules.T1 andη values remain highly sensitive to internal
motions in theωiτ ≈ 1 regime even for large tumbling
correlation times while very fast and very slow intramolecular
processes become relaxation-inactive. In this limit, the system
assumes nearly solid-like behavior. IfT2, which samples also
J(0), is included in the fit, the very fast internal motions maintain
their dominant influence onT2 irrespective ofτc.
For σ2 of F9, the fitted value forσ2

fit is smaller thanσ2
LD for

shortτc due to the statistical error for theø2 180° jumps during
the 100 ns LD simulation, where a population ratio of the two
ø2 rotamers of 0.53:0.47 is observed. Since for symmetry
reasons, the GAF & jump model intrinsically assumes equal
populations, the model overestimates the amount of jump motion
present compared to the LD target. The fit compensates for
this by reducing theσ2 value, and thus underestimatesσ2. For
largerτc, σ2 increases steadily to compensate for the reduced
σ1 value, because the relevant ring vectors, such as Cδε-Hδε,
which experience motion aboutø2 and therefore determineσ2,
are not significantly affected by the 500 ps mode. Again,
removal of this mode yields more consistent fits forσ2,
exhibiting a slight decrease for increasingτc. The fittedτ2

jump

time constants (Table 2) are rather insensitive toτc and are close
to the LD estimates.

The consistency analysis of F6, summarized in Table 3, yields
a slightly overestimated fittedσ1. The reason lies in the presence
of phenyl ring bending motion, which is independent of dihedral
angle fluctuations aboutø1 andø2 and which reduces the order
parameterS2 of Cú-Hú to 0.16 compared to 0.20 for Câ-Hâ.
Since this additional motion is not explicitly included in the
GAF & jump model, it leads to an increased fitted value ofσ1
≈ 15.5° compared to 13° estimated from the LD trajectory. The
Cδε-Hδε vectors, on the other hand, are less affected by the
bending mode, and the fitted values ofσ2 are underestimated,
compensating for the overestimated motion aboutø1. As for
F9, the two phenyl ring rotamers are not exactly 1:1 populated
in the LD simulation due to the finite length of the trajectory,
causing a decrease of the fittedσ2 value.
In summary, application of the GAF & jump model to the

simulation data gives for both residues reasonably good agree-
ment, as long as the overall tumbling of the molecule is not too
slow. Forτc e 5 ns theσ1 andσ2 fluctuation parameters can
be retrieved with reasonable accuracy from theT1 and NOE
data calculated from the LD trajectory at three differentB0 field
strengths. The intramolecular diffusion constants are remarkably
sensitive to the presence of a small-amplitude slow-time-scale
dynamical mode. In particular, forτc > 5 ns this mode starts
to contribute significantly to the relaxation parameters, biasing
strongly the estimates forσ1 andσ2 as this additional intermedi-
ate-rate motion is not explicitly parametrized in the model.

5. Application to Experimental Data

The GAF & jump model can now be applied to the
experimental relaxation data of F6 and F9 of antamanide
published previously in ref 24 where 31 relaxation parameters
have been measured and evaluated for each of the four
phenylalanine residues. The present analysis is restricted to the
25 standard13C T1 and{1H}13C NOE parameters measured at
three differentB0 fields of 200 (onlyT1), 400, and 600 MHz
proton frequency at 320 K. (The six parameters related to
heteronuclear two-spin order, which are not widely used, were
found to have minor influence on the fitting results and were
not included here.) The set of optimum parameter values of
the GAF & jump model, determined by least squares fits, is
given in Table 4.
For F6, a three-site jump model has been applied to theø1

motion, based on the results of sections 3 and 4. Two
populations and two jump rate constants were assumed to be
equal: pI ) pII , τIIIfI

jump ) τIIIfII
jump . Table 4 shows that the local

GAF motion leads to an rms angular fluctuation of 10.5( 5°
and to nearly equal populations of the three rotamers withpI )
pII ) 32( 13% andpIII ) 36( 25%, whereby the uncertainty

Table 3. Fit of 2D GAF & Jump Model Parameters of F6 for Differentτc Valuesa

fitsmodel
parameters τc ) 0.150 ns τc ) 0.800 ns τc ) 5 ns τc ) 15 ns

direct LD
estimate

ø1 σ1 (deg)b 15( 5.9 15.4( 3.4 15.9( 3.0 15.8( 2.5 13.8c,d

pIIIe (%) 9( 5 9( 3 10( 1 10( 1 9
pI ) pIIe (%) 45.5( 2.5 45.5( 1.5 45( 0.5 45( 0.5 pI ) 43

pII ) 48
τIIIfI
jump ) τIIIfII

jump (ns)e 3.2( 1.8 3.2( 1.4 3.2( 0.2 3.2( 0.2 3.3f

τITII
jump (ns)e 0.11( 0.07 0.11( 0.05 0.15( 0.01 0.18( 0.01 0.12f

ø2 σ2 (deg)g 18( 0.2 17( 0.2 16( 0.4 13( 0.8 25.7
τ2
jump (ns) 0.37( 0.02 0.50( 0.01 0.63( 0.01 0.49( 0.04 (0.16)h

a The error limits given are determined by a Monte Carlo procedure consisting of 100 fits with random errors of 2% standard deviation added
to all T1 and NOE relaxation data computed from the LD trajectory.b τ1

GAF < 0.01 ns for allτc values. Estimated value from LD:τ1
GAF ) 0.02 ns.

cRefers to the dihedral angle N-CR-Câ-Hâ. dRoot-mean-square (rms) dihedral angle fluctuation.eAbsolute rotamer identification is not possible
from fitting relaxation data.f τifj

jump ) pi/Nifj whereNifj is the number of transitions from rotameric statei to rotameric statej. g τ2
GAF < 0.01 ns for

all τc values. Estimated value from LD:τ1
GAF ) 0.02 ns.h See caption of Figure 3.
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of the numerical values is high due to the relatively large transfer
time constantsτIIIfI

jump ) τIIIfII
jump ) 2.3( 1.5 ns andτITII

jump ) 0.76
( 0.22 ns. The time constant for the local GAF motion is fast
and not accurately measurable withτ1

GAF < 10 ps. The GAF
of ø2 has an rms value of 18.4( 4.5°, again with a very short
time constantτ2

GAF < 10 ps, while the two-site jump process is
slow, τ2

jump > 4 ns, with little influence on the relaxation
behavior.
It is interesting to compare these results with the analysis of

the full 31 relaxation parameters given in ref 24 where several
simpler models have been considered. The present analysis can
be compared with the three-site/two-site jump model A1B2 and
with the restricted three-site/two-site jump model C1B2.24 No
exact agreement with either model is expected because in the
present case, oneø1 transition is faster than the other two, while
for the restricted three-site model, two transitions are allowed
while the third one is forbidden. For the inverse average rate
constant of theø1 jumps, 1/τj1

jump ) (1/τITII
jump + 1/τIfIII

jump +
1/τIIIfI

jump)/3, one finds the valuesτj1
jump (GAF + jump) ) 1340

ps, τj1
jump (model A1B2) ) 785 ps, andτj1

jump (model C1B2) )
715 ps. Although the error limits of the involvedτ values are
considerable, one can attribute the slower jump process in the
GAF & jump model to the separation of the motion into jump
processes and fast Gaussian axial fluctuations.
The previous analysis24 delivered for the two-site jump motion

of F6 aboutø2 a well-defined correlation timeτ2
jump ) 1/k2 )

81.6( 8 ps (assuming model C1B2). In the present analysis
where this motion has been divided into a local GAF motion
and a superimposed two-site jump process, the corresponding
correlation times are ill-determined withτ2

GAF < 10 ps and
τ2
jump > 4000 ps. The latter has no effect on relaxation, and the
only relevant motional parameter isσ2 ) 18.4( 4.5°, reflecting
the partial averaging of the involved interactions. The consider-
ably larger value ofτ2

jump determined from the experimental
data in comparison to the values from the LD simulation (see
Table 3) can at least partially be explained by the elevated
temperature of 400 K in the simulation.
The relaxation-active motion of F9 can be described by a

standard GAF model forø1 with σ1 ) 16.5( 3.5° andτ1
GAF <

10 ps while forø2 GAF & jump motion seems appropriate. The
fluctuations withσ2 ) 13.8( 4.5° are again fast withτ2

GAF <
10 ps and have a mere averaging effect. On the other hand,
the two-site jump motion has withτ2

jump ) 760 ( 330 ps a
correlation time that weakly influences relaxation.
The F9 results can be compared with the model E1B2 of ref

24 with restricted rotational diffusion and a restriction angle
φmax) 32( 3° in ø1 and two-site jump motion inø2. The rms
fluctuation amplitudeσ1

rect corresponding to motion in a rec-

tangular potential of half-widthφmax is given byσ1
rect ) φmax/

x3 ) 18.5 ( 2° and is well comparable with the presently
determined value ofσ1

GAF ) 16.5( 3.5°. The corresponding
correlation time, indicated asτ1 ) 200 ps in ref 24, is
ill-determined and has to be considered as an upper limit. This
becomes obvious from the error surfaces of Figures 4 and 5 in
ref 24. It is not in true contradiction to the presently found
valueτ1

GAF < 10 ps.
The previous analysis with the E1B2 model of ref 24 led to

a ø2 jump correlation timeτ2
jump ) 1/k2 ) 132.2( 12 ps while

here a corresponding correlation timeτ2
jump ) 760 ( 330 ps

was found. The discrepancy again shows that by taking into
account Gaussian axial fluctuations inø2 the relaxation data no
longer require a significant relaxation contribution from the two-
state jump process, leading to a long and ill-determined
correlation timeτ2

jump.
The derived approximate populations of the threeø1 rotamers

can also be compared with a population analysis based on the
measuredJ-coupling constants.41,45,46 The most reliable values
known today stem from J. M. Schmidt:41 For F6,pI ) 30%,
pII ) 22%, andpIII ) 48%; and for F9,pI ) 88%,pII ) 12%,
and pIII ) 0%. They are in qualitative agreement with the
present findings. It should be noted that a relaxation analysis
is often rather insensitive to the accurate population numbers
unless the jump rate constant is in its most sensitive range. For
this reason, it is advisable to combine relaxation andJ-coupling
measurements for achieving a better accuracy of the motional
parameters.

Conclusion

Molecular dynamics simulations are widely used to compute
spectroscopic and scattering properties for direct comparison
with experimental data.29 We use here an extended LD
trajectory for the construction of potentials of mean force, which
cover most of the NMR relaxation-active motions and which
are suitable for deriving analytical expressions of the NMR
correlation functions. The resulting model contains a minimal
number of parameters whose values can be determined by
comparison with experimental data. The deduction of qualita-
tive features of the analytical model from the LD simulation
represents an improvement over the otherwise often subjective
process of model selection in the course of data interpretation.
In this study, the GAF & jump model emerged for the

phenylalanine side-chain motion in antamanide and allowed us
to attribute motion reflected in NMR relaxation data to the
relevantø1 andø2 motional degrees of freedom. A sensitivity
analysis yielded valuable insight into the interplay between
correlation times, motional amplitudes, and experimentally
accessible relaxation parameters. It also demonstrates the
feasibility and limitations of extracting the relevant motional
parameters that determine experimental relaxation data.
This protocol is particularly suitable to describe the dynamics

of a subsystem involving a relatively small number of motional
modes, such as an amino acid side chain attached to a relatively
rigid polypeptide backbone. In cases of slow, relaxation-inactive
backbone mobility that may influence the side-chain dynamics,

(41) Schmidt, J. M. To appear inSupramol. Struct. Funct.
(42) Zare, R.Angular Momentum; Wiley-Interscience: New York, 1988.
(43) Brüschweiler, R.; Case, D. A.Prog. NMR Spectrosc.1994, 26, 27-

58.
(44) Werbelow, L. G. InNMR Probes of Molecular Dynamics; Tycko,

R., Ed.; Kluwer: Dordrecht, The Netherlands, 1994; pp 223-263.
(45) Griesinger, C.; Sørensen, O. W.; Ernst, R. R.J. Magn. Reson.1987,

75, 474-492.
(46) Kessler, H.; Mu¨ller, A.; Pook, K.-H.Liebigs Ann. Chem.1989, 903-

912. Kessler, H.; Bats, J. W.; Lautz, J., Mu¨ller, A. Ibid. 1989, 913-928.

Table 4. Fit of the Model Parameters of F6 and F9 to the
Experimental Dataa (τc ) 150 ps)

F6 F9

ø1 σ1 (deg)b 10.5( 5 16.5( 3.5
pIII c (%) 36( 25
pI ) pIIc (%) 32( 13
τIIIfI
jump ) τIIIfII

jump (ns) 2.3( 1.5

τITII
jump (ns) 0.76( 0.22

ø2 σ2 (deg)d 18.4( 4.5 13.8( 4.5
τ2
jump (ns) >4 0.76( 0.33

a Experimental13C T1 at 200, 400, and 600 MHz and{1H}13C NOE
values at 400 and 600 MHz at 320 K have been used from ref 24.
Errors are calculated using error propagation.b τ1

GAF < 0.01 ns.c The
relaxation data are rather insensitive to the exact population numbers
for this tumbling regime (τc ) 150 ps) (see the text).d τ2

GAF < 0.01 ns.
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it is possible to investigate the side-chain dynamics and the
resulting NMR relaxation independently for several backbone
conformations and to average the results. In many situations,
one can expect that the qualitative features of the side-chain
dynamics are not affected by the backbone mobility such that
the study of a single backbone conformation provides sufficient
information for establishing a motional model for the side
chain(s) under investigation.
Situations are conceivable where the proposed approach

becomes less suitable. For highly flexible molecules with
numerous degrees of freedom requiring a large number of model
parameters, it may be difficult to obtain sufficiently good
statistics to derive a reliable motional model. Moreover, the
emerging model may be too complicated to allow for analytical
expressions of the NMR correlation functions. In biomolecules
with a rather well-defined average structure, on the other hand,
we can envisage a large class of motional processes where the
described protocol is promising for deducing motional properties
that are of relevance for understanding the molecule’s function.
The approach presented here combines complementary

information from molecular dynamics simulation and NMR
relaxation. Its application to side-chain motion illustrates the
necessity for such a unified approach to overcome the inherent
ambiguity of the relaxation data with respect to their detailed
physical interpretation.

Acknowledgment. Dr. Thomas Schulte-Herbru¨ggen is grate-
fully acknowledged for stimulating discussions. This research
was supported by the Swiss National Science Foundation.

Supporting Information Available: A table giving the
amplitudesAi and time scalesτi of eq 5 which characterize the
correlation functions of F6 and F9 derived from the MD
simulation (1 page). See any current masthead page for ordering
and Internet access instructions.

Appendix

Motion in the 2D Harmonic Potential. We consider a
molecular side chain with two rotational degrees of freedom
given by the dihedral anglesø ) (ø1, ø2) and the 2D harmonic
potential

We select, for the moment, the origin ofø1 and ø2 such that
〈ø1〉 ) 0 and 〈ø2〉 ) 0. Using a standard procedure, the
probability distribution is obtained by transforming to normal
coordinatesø1′ andø2′:

whereλ1,2 ) (A + B ( ((A - B)2 + 4C2)1/2)/2, ø′ ) Rø,

and R ) atan ((λ1 - A)/C) where (cosR, sin R)T is the
eigenvector toλ1. R is the tilt angle of the principal axis of the
ellipse defined by eq A1 with respect to theø1 axis. ø1′ and
ø2′ are stochastically independent random variables with Gauss-
ian probability distributions

with variancesσi2 ∝ kBT/λi, whereT is the absolute temperature.
ø1 andø2 are also Gaussian distributed withσø1

2 ) 〈ø12〉 - 〈ø1〉2

) (cos2 R)σ12 + (sin2 R)σ22 and σø2
2 ) (sin2 R)σ12 + (cos2

R)σ22. The correlation coefficientr betweenø1 and ø2 is
determined by

Thus,r ) 0 for σ1 ) σ2 or R ) 0, π/2, andr ) (1 for σ1 )
0 or σ2 ) 0 (if R * 0, π/2). Although the relevant NMR
correlation functions calculated from the LD trajectory do not
show significant correlations between the local fluctuations of
ø1 and ø2 (|r| , 1), the following treatment includes this
possibility.
NMR Correlation Functions. The NMR correlation func-

tions are calculated here for an axially-symmetric second-rank
tensor, such as an internuclear vectorei, pointing in a coordinate
system which is rigidly attached to the phenylalanine ring (ring
system) along the (time-independent) directionΩi

ring ) (θi, æi).
The ring system has itsz axis parallel to the internuclear Cγ-
Cú vector and thex axis lies in the ring plane, while they axis
is perpendicular to the plane. The ring system is attached to
the polypeptide backbone via the two dihedral anglesø1(t) and
ø2(t), whose axes intersect at the CR-Câ-Cγ bond angleâ )
109°. The backbone frame is related to the laboratory frame
by a rotation through the three time-dependent Euler angles,
specified byΦ(t).
In isotropic liquids, the angular part of the power spectral

density function of two normalized axially-symmetric rank 2
tensorsµ andν is

with the correlation functionCµν(t) given by

whereΩi
lab(t) describes the orientation ofei in the laboratory

frame. Starting out fromY2k(Ωµ
ring), Y20(Ωµ

lab(t)) is obtained by
four successive rotations: (i) rotation about-ø2, (ii) rotation
about they axis of the ring system by the bond angleπ-â,
(iii) rotation about-ø1, and (iv) overall rotational tumblingΦ(t).
Using the transformation properties of spherical harmonics,42

one obtains

whereDkl
(2)(R,â,γ) denote Wigner matrix elements:

Insertion of eqs A7 and A8 into eq A6 yields

The angular brackets indicate a time average, whereby inde-
pendence between internal and overall tumbling motion has been
assumed. For isotropic tumbling, one obtains

V(ø1, ø2) ) Aø1
2 + 2Cø1ø2 + Bø2

2 (A1)

V(ø1′, ø2′) ) λ1ø1
2 + λ2ø2

2′ (A2)

R )[ cosR sinR
-sinR cosR ]

p(øi′) døi′ ) (2πσi
2)-1/2 exp(-øi′

2/2σi
2) døi′ (i ) 1, 2)

(A3)

r )
〈ø1ø2〉
σø1

σø2

) (cosR sinR)
(σ1

2 - σ2
2)

σø1
σø2

(A4)

Jµν(ω) )∫-∞

∞
Cµν(t)e

-iωt dt (A5)

Cµν(t) ) 4π〈Y20(Ωµ
lab(t)) Y20*(Ων

lab(0))〉 (A6)

Y20(Ωµ
lab(t)) )

∑
k,l)-2

2

Dl0
(2)(Φ(t)) Dkl

(2) (-ø2(t), π-â, -ø1(t)) Y2k(Ωµ
ring) (A7)

Dkl
(2)(R,â,γ) ) e-ikR dkl

(2)(â) e-ilγ (A8)

Cµν(t) ) 4π ∑
k,l,k′,l′)-2

2

〈Dl0
(2)(Φ(t)) Dl′0

(2)*(Φ(0))〉 ×

〈eikø2(t)+ilø1(t)e-ik′ø2(0)-il ′ø1(0)〉 dkl
(2)(π-â) dk′l′

(2)(π-â) ×
Y2k(Ωµ

ring) Y2k′*(Ων
ring) (A9)
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Transformation to normal coordinates according to eq A2 with
the abbreviationsc ) cosR ands ) sin R yields

We now take advantage of the fact that harmonic averaging
over ø1′ andø2′ can be carried out independently. The result
for averaging in the strong friction limit has been given by
Szabo:28

and one obtains

For t ) 0 it follows, after some algebra, thatCµν(0)) P2(eµ‚eν).
For long times,Cµν(t)e6Dt reaches a plateau value, given by the
order parameterSµν

2,

whereFkl ) exp{-(1/2)[l2σø1
2 + k2σø2

2 + 2lkσø1σø2r} and the
correlation coefficientr has been defined in eq A4. Spin pairs
which experience motions about bothø1 and ø2 yield order
parametersSµν

2 which carry combined information onσ12, σ22,
andr. For a sufficiently large number of internuclear vectors
probing different orientations, determination of all three pa-
rametersσø1, σø2, andr using eq A14 is possible, provided that
σø1

2 * σø2
2.

For C-H spin pairs which experience only motion aboutø1,
such as Câ-Hâ pairs, eq A14 reduces to the one-dimensional
GAF model25

Adding Multiple Lattice Site Jumps in ø1 and ø2. Ex-
change between rotamers inø1 and ø2 can be included in a

straightforward way if one assumes that such motion is
statistically independent of the Gaussian fluctuations and that
the harmonic potentials are identical in each rotamer. For this
purpose we introduce averageø values for the rotameric
conformationsµ of ø1 and ø2 and denote them byøj1(u) and
øj2(u), respectively. It follows that

The first average is of the type in eq A13 while the second
average includes averaging over the different rotameric states.
From the standard treatment of the lattice jump model (see, e.g.,
ref 43), it follows that the conditional probabilitiesP(w,t|u,0),
which the system occupies at timet statew if it was at time 0
in stateu, obey a master equation

where the matrix element [K ]wu is the transition rate constant
between sitesu andw. Equation A17 has the formal solution

In thermal equilibrium all sites are populated with Boltzmann
populations,p(w) ) limtf∞ P(w,t|u,0). Insertion of eq A18 into
eq A16 yields

In case the rotameric exchange processes ofø1 and ø2 are
independent, they can be described by two master equations
with kinetic matricesK1 andK2, respectively. The average of
eq A16 can then be split into an average overø1 rotamersa, b
) 1, ...,M and an average overø2 rotamersu, w ) 1, ...,N:

where

This separation has been used together withr ) 0 (c ) 1, s)
0) for the analysis of the NMR relaxation data calculated from
the LD trajectory:

Cµν(t) ) ∑
k,k′,l)-2

2

〈eikø2(t)+ilø1(t)e-ik′ø2(0)-ilø1(0)〉GAF×

〈eikøj2(t)+iløj1(t)e-ik′øj2(0)-iløj1(0)〉jump(4π/5)e-6Dt dkl
(2)(π-â) ×

dk′l
(2)(π-â) Y2k(Ωµ

ring) Y2k′*(Ων
ring) (A16)

P4 ) KP with P(w,0|u,0)) δuw (A17)

P(w,t|u,0)) [eK t]wu (A18)

Cµν(t) )
4π

5
e-6Dt ∑

k,k′,l)-2

2

∑
u,w

dkl
(2)(π-â) dk′l

(2)(π-â) ×

Y2k(Ωµ
ring) Y2k′*(Ων

ring) p(u) ×

[eK t]wue
ikøj2(w)+iløj1(w)-ik′øj2(u)-iløj1(u) exp{-

1

2
σ1

2[(1c+ ks)2 +

(lc + k′s)2 - 2(lc + ks)(lc + k′s) exp{-D1t/σ1
2} ]} ×

exp{-
1

2
σ2

2[(kc- ls)2 + (k′c- ls)2 -

2(kc- ls)(k′c- ls) exp{-D2t/σ2
2}]} (A19)

〈eiløj1(t)-iløj1(0)eikøj2(t)-ik′øj2(0)〉jump )

〈eiløj1(t)-iløj1(0)〉jump,ø1〈e
ikøj2(t)-ik′øj2(0)〉jump,ø2 (A20)

〈eiløj1(t)-iløj1(0)〉jump,ø1 ) ∑
a,b

p1(a)[e
K1t]bae

iløj1(b)-iløj1(a) (A21)

〈eiløj2(t)-ik′øj2(0)〉jump,ø2 ) ∑
u,w

p2(u)[e
K2t]wue

ikøj2(w)-ik′øj2(u) (A22)

〈Dl0
(2)(Φ(t)) Dl′0

(2)*(Φ(0))〉 ) 〈Dl0
(2)(Φ(t)) D-l′0

(2) *(Φ(0))〉 )

(1/5)e-6Dtδll ′ (A10)

Cµν(t) ) ∑
k,k′,l)-2

2

〈eik(sø1′(t)+cø2′(t))+il (cø1′(t)-sø2′(t)) ×

e-ik′(sø1′(0)+cø2′(0))-il (cø1′(0)-sø2′(0))〉 ×
(4π/5)e-6Dt dkl

(2)(π-â) dk′l
(2)(π-â) Y2k(Ωµ

ring) Y2k′*(Ων
ring)

(A11)

〈eimøR′(t)-inøR′(0)〉 ) exp{-(1/2)σR
2[m2 + n2 -

2mnexp{-DRt/σR
2}]} (R ) 1, 2) (A12)

Cµν(t) )
4π

5
e-6Dt ∑

k,k′,l)-2

2

dkl
(2)(π-â) dk′l

(2)(π-â) Y2k(Ωµ
ring) ×

Y2k′*(Ων
ring) exp{-

1

2
σ1

2[(1c+ ks)2 + (lc + k′s)2 -

2(lc + ks)(lc + k′s) exp{-D1t/σ1
2}]} ×

exp{-
1

2
σ2

2[(kc- ls)2 + (k′c- ls)2 -

2(kc- ls)(k′c- ls) exp{-D2t/σ2
2}]} (A13)

lim
tf∞

Cµν(t)e
6Dt ) Sµν

2 )

(4π/5) ∑
k,k′,l)-2

2

dkl
(2)(π-â) dk′l

(2)(π-â) Y2k(Ωµ
ring) ×

Y2k′*(Ων
ring) FklFk′l (A14)

S2 ) 1- 3 cos2 θ{cos2 θ(1- e-σø1
2
) +

(1/4) sin2 θ(1- e-4σø1
2
)} (A15)
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The power spectral density functionJµν(ω) which enters the
relaxation equations is obtained by Fourier transformation of
Cµν(t). The Fourier transform of the terms of type

contained in eq A23, can be calculated analytically by using a
Taylor series expansion of the outer exponential function,

where good convergence is usually obtained already for small
N. The Fourier transform off(t) can then be represented as a
sum of Lorentzians of the form 2σR

2{mDR(1 + (ωσR
2/

mDR)2)}-1.
The autospectral density functionJµ(ω) ≡ Jµµ(ω) can be used

to evaluate the standard expressions for longitudinal dipolar
relaxation of a13C spin attached toN protons:1

whereγC andγH are the gyromagnetic ratios of the nuclei and
ωC andωH their Larmor frequencies, respectively;h is Planck’s
constant,µ0 is the magnetic field constant, andrCH is the
internuclear distance.
The corresponding heteronuclear steady-state{1H}13C NOE

η is

whereT1 is the total13C T1 relaxation time including the CSA
contribution.
For an axially-symmetric CSA tensor, one can use the

standard formula

whereσ| andσ⊥ are the chemical shielding tensor components
parallel and perpendicular to the symmetry axis defined by
Ωµ

ring.
For a non-axially-symmetric CSA tensor the situation is more

complicated. We use here the fact that any non-axially-
symmetric tensor can be described as a superposition of two
axially-symmetric, orthogonal tensors. In the CSA principal
axis systemσ (with Tr{σ} ) 0) is44

whereσx ) σxx - σzzandσy ) σyy - σzz. CSA relaxation can
thus be described as the sum of two autocorrelated CSA
relaxation terms and one cross-correlated CSA relaxation term,

where Jxx(ω) indicates thatΩµ
ring ) Ωv

ring in eq A19 points
along thex axis of the CSA tensor, and correspondingly in
Jyy(ω), Ωµ

ring ) Ωv
ring points along they axis of the CSA tensor.

For the cross-correlation termJxy(ω), Ωµ
ring is parallel to thex

axis whileΩv
ring is parallel to they axis. The totalT1-1, which

enters also eq A27 for the NOEη, is thenT1-1 ) (T1-1)D +
(T1-1)CSA. It is noted here that the CSA treatment used in eq 4
of ref 24 is correct only for an axially-symmetric CSA tensor
interaction. For the general case of a non-axially-symmetric
CSA tensor, eq A30 has to be used.

JA9636505

η ) 1+
γH

γC
[N 1
20(µ0

4π)2( h2π)2γC
2γH

2〈rCH
-3〉2{6Jµ(ωC+ωH) -

Jµ(ωC-ωH)}/T1
-1] (A27)

( 1T1)CSA ) 1
15
(σ| - σ⊥)

2ωC
2Jµ(ωC) (A28)

σ ) [σxx 0 0
0 σyy 0
0 0 σzz

] ) 1
3

σx[2 0 0
0 -1 0
0 0 -1] + 1

3
σy[-1 0 0

0 2 0
0 0 -1]

(A29)

( 1T1)CSA ) 1
15

ωC
2{σx

2Jxx(ωC) + σy
2Jyy(ωC)+2σxσyJxy(ωC)}

(A30)

Cµν(t) )
4π

5
e-6Dt ∑

k,k′,l)-2

2

∑
a,b

∑
u,w

dkl
(2)(π-â) dk′l

(2)(π-â) ×

Y2k(Ωµ
ring) Y2k′*(Ων

ring) p(a)[eK1t]bae
iløj1(b)-iløj1(a) ×

p(u)[eK2t]wue
ikøj2(w)-ik′øj2(u) exp{-

1

2
σø1

2l2(1-

exp{-D1t/σø1
2})} exp{-

1

2
σø2

2(k2 + k′2 - 2kk′ ×

exp{-D2t/σø2
2})} (A23)

f(t) ) exp(A+ B exp(-DRt/σR
2)) (A24)

f(t) ) lim
Nf∞

∑
n)0

N (A+ B exp(-DRt/σR
2))n

n!
)

lim
Nf∞

∑
n)0

N

∑
m)0

N (nm)A
n-mBm exp(-mDRt/σR

2)

n!
(A25)

( 1T1)D ) N
1
20(µ0

4π)2( h2π)2 γC
2γH

2〈rCH
-3〉2{3Jµ(ωC) +

Jµ(ωC-ωH) + 6Jµ(ωC+ωH)} (A26)
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